

White Paper

Open platforms and the impact of

Security Technologies, Initiatives, and

Deployment Practices

Bill Jacobs

Cisco Systems, Inc.

Vincent J. Zimmer

Intel Corporation

November 2012

 ii

Executive Summary
This paper is an overview of security technologies as applies to current PC systems. The goal of

this paper is to contrast and compare various security technologies, initiatives, and practices that

may be applied to client or server x86 platforms. These technologies range from silicon-based to

standards-based. Here we are not intending to prescribe certain technologies, rather our goal is to

define all of these disparate technologies in one place, show how these various technologies

complement each other, indicate where they may overlap or leave gaps, and illustrate how they

can be applied to help secure your platform.

This paper is mainly intended for hardware, firmware, software, and BIOS engineers. But

beyond this audience, some of the information in this paper will be valuable for IT decision

makers, marketing, and other parties.

The reader should take away an understanding of the motivations behind trusted platform design,

the terminology of trust, how to navigate the Trusted Computing Group specifications and

technology that relate to the platform, impact on platform firmware and UEFI, instances of

deployment in the market, and some future possible directions for hardware and firmware.

The views and opinions of the authors do not necessarily reflect the views of Cisco Systems, Inc.

and Intel Corporation, or their respective affiliates.

 iii

Table of Contents

Overview ..2

Problems to solve ...3

Secure Platform ...4

Secure Platform Life Cycle ... 4
Design Phase .. 5
Development and Test Phase .. 6

Maturity of Secure Development Practices ... 7
Manufacturing .. 7
Deployment ... 8
Production ... 8
End of Life ... 8

Summary .. 9

Application of Security Initiatives..10

Managed Pool State .. 11
Pre-OS State ... 11
Secure Boot ... 16
Late Launch State .. 18
Persistent Memory Resident Platform Information Spanning Boot 19

Summary .. 19

Conclusion ...21

Glossary ..22

References ...24

 2

Overview

This section will describe an overview of the ensuing chapters.

Description of each chapter
We start by describing the present state of computing as related to security issues,

focused on the platform itself. This chapter should be of interest to BIOS developers

interested in how their efforts relate to the larger class of business and market concerns,

all the way to the IT staff making procurement decisions based upon their particular risk

profile.

Next we explore solutions in a life-cycle perspective so that we may illustrate where

specific technologies and initiatives apply to platform security. Here we seek to show that

secure platform design can leverage many technologies from various sources, and that

these technologies can be complementary when properly applied. This chapter should be

of interest to IT decision makers who have to ensure that their investment is consistent

with their overall strategy around capital deployment. This section is also of interest to

the system architects at platform manufacturers who need to balance the security

properties of their product with other competing requirements, such as manageability,

cost, and performance. Within each of these chapters we add a secure design participant

view of the platform, highlighting areas of specific interest to various parties ranging

from the marketer seeking to establish a security requirements list to the BIOS developer

desiring to know how to apply technologies, and we tie these views back to the life-cycle

perspective given earlier. The hope is that these various approaches enable crisper

takeaways for various reader perspectives.

The conclusion will provide a recap of some key points and summary of the items treated

in the preceding chapters.

Summary
This chapter has provided a roadmap to reviewing the successive sections of this paper.

 3

Problems to solve

In this initial chapter on “Problems to Solve,” some motivation for the development of

platform trust is covered. Specifically, the many concerns found in the industry around

security are discussed.

Problem background

In the past, proprietary security solutions, non-open standards based initiatives, and

confusing terminology have meant that applying effective security to an x86 platform has

been difficult and costly. And the proliferation of solutions has led customers to have to

understand all of the competing solutions, determine how to make disparate products

interplay, and in many cases, create custom middle-ware solutions and agents to manage

them.

While it is true that standardizing interfaces may in fact invite attacks, taking for example

UEFI firmware’s open standard BIOS replacement, such a move also brings with it

opportunities to create effective counter measures that everyone can apply and in so

doing, effectively strengthens the standard solution for all.

Further, Operating System vendors (OSVs), hypervisor and virtual machine monitor

vendors (VMMV’s), original equipment manufacturers (OEM’s), and Information

Technology (IT) staff all want to enjoy the open platform. This allows for amortizing

development costs across a large class of systems and the ability to procure platforms

from different vendors. As part of this openness and choice, though, the trustworthiness

of the underlying platform must remain.

Key points
Security isn’t hype, but a real market need. Security can also be a moving target if open

system design is your goal.

Summary
This chapter has provided a brief introduction to some of the business problems and

threats that will motivate the development of trusted platforms.

 4

Secure Platform

Fortunately, in addition to the numerous and ever increasing threats to platform security,

there are several initiatives and applicable technologies specifically designed to counter

these threats. Many, if properly applied, can anchor a strong trust chain to the hardware

layer and make penetration into platform firmware and above more difficult.

This chapter moves into solution space by presenting a secure platform life-cycle and

addressing the security initiatives, technologies, and techniques involved in

comprehensive secure platform development and deployment. Here we will elaborate on

many of the myriad of commonly, and less-commonly, referenced terms applied by

various organizations for platform security.

Secure Platform Life Cycle

In order to adequately address the possible security gaps on these platforms, one has to

take a holistic view of the entire life-cycle of the platform from concept to end of life

decommissioning or repurposing. It is not sufficient to simply try to patch up a platform

with “bolt-on security”. In fact, security counter-measures must be as deeply rooted as an

attack might go. For example, protecting the firmware cannot be effective with only

operating system-level measures. Additionally, in order to create a truly secure platform,

design practices must also be employed in all facets of development – hardware design

working in concert with sound coding practices, sane deployment and management

schemes, as well as secure operating and maintenance environments must all be

addressed. Finally, one must also think about the possibility of secure data (e.g. keys)

persisting after a platform has been “decommissioned”.

 5

Platform Life Cycle

Design Dev/Test Mfg Deploy Production EOL /Re-purpose

Select
defensible
architectures
and
components,
and choose
compatible
security
technologies.

Employ security
practices such as
Safe C, static
analysis, device
hardening, etc.

Build a secure
eco-system and
supply chain
with your
partners.

Enabled and
Provision
Security
features. Employ secure

maintenance
practices such
as Signed and
Authenticated
updates.

Clear secrets
from
permanent
media and
NVRAM.

Figure 1 Platform Life-Cycle

The above timeline illustrates where security should be addressed in order to produce a

life-cycle secure platform. From this diagram it is obvious that a platform’s security must

be addressed from inception to end of life. We believe there are no phases which can be

ignored without imperiling the platform’s secure use. Below we will expand on each

phase of the Secure Platform Life-Cycle.

Design Phase

When conceptualizing a new PC platform, one must think of the mission or use-case for

that platform. Included in that use-case analysis one must consider its security/threat

environment and security requirements. If the platform is required to meet any security

requirements, which may be market-driven or may be required by your own

organization’s security policies, then a review of the hardware-firmware-OS stack

relative to the threat environment must be under taken in order to understand where

potential issues lie.

Here we may even want to create a formal Threat Model of the platform and understand

based on physical interfaces, software APIs, management control points, use-model, the

user, and functionality where potential attacks may come from. This analysis should be

detailed enough to consider protocols employed across the many potential interfaces to

the secure platform. The results of this analysis will inform the designers of the platform

of specific threats via specific channels.

 6

With this information we want to choose the technologies and make the explicit design

decisions that support the level of security we are after. This may involve platform

architectural decisions, specific silicon or firmware choices, auxiliary device add-on

selections, etc. Here the designer should be thinking in terms of Trust Boundaries; that is,

thinking about areas that we can inherently trust and how to leverage these into building

trust generally on the platform. Some of these decisions may impact assumptions or pre-

conceived design ideals. The point is, Security must be approached as any other use-case

feature decision on your secure platform, and should not be applied only as an after-

thought once development has begun.

Here you will want to leverage the initiatives of industry groups like Trusted Computing

Group (TCG) and government organizations like (US Government) NIST. It is also

highly advisable to consult with your silicon vendor, ODM partners, firmware providers,

any add-in IO card or device providers, OS vendors and the rest of your eco-system

partners to confirm that you have explored all options for platform security. Each of these

components can expose attack surfaces on your platform so each must be addressed in a

comprehensive way. Again, in most platforms based on off-the-shelf components, a

holistic solution that is based on open standards has a better chance of playing well

together to positively affect security on your platform than one-off, home-grown custom

solutions.

Also, special attention should be placed on understanding the software as well as

hardware requirements that build platform security. Many times hardware security is

augmented by software changes, and vice versa.

Stakeholders with particular interest in the Design phase are planners and marketers as

well as platform architects.

Development and Test Phase

The specific requirements called out in the Design Phase are to be addressed in this

Development and Test Phase. This means that the initiatives, components and

requirements of the Design phase are integrated into the platform and made to function,

and validated as such.

Leveraging secure development practices in the platform Development and Test phase

will go a long way toward comprehensive secure platform development. In fact, many

hygiene practices such as employing Safe C libraries, static code analysis, ensuring 3
rd

party code is free of back doors, and so on should be part of any mature, secure

development organization. If these practices are not part of your organization’s DNA,

then they should be explicitly called out as Requirements and tracked. In either case,

testing should always seek to verify that safe development practices were adhered to.

The Development and Test phase is where you will want to establish practices, methods,

and tools for entering keys, and provisioning security devices with platform manufacturer,

and in some cases, platform owner data. Here you will want to work out how to sign code

modules and images which support authenticated update and secure loading schemes.

 7

Examples are signing of BIOS updates, programming launch control policies, and so on.

Other portions of the development phase include testing. This can be positive testing,

such as the UEFI Self-Certification Tests (SCT’s) or the Trusted Platform Module (TPM)

compliance tests. Herein, the device under test is subjected to expected or specified input

values and the system is observed to see if the expected output or return values occur.

This is as opposed to negative testing, or fuzzing, where unexpected inputs are injected

and the system is observed to see if it survives and continues functioning or enters the

appropriate remediation or recovery mode. Both positive and negative testing have a

place in testing secure platforms.

Maturity of Secure Development Practices

Another key technique in the development of a truly secure platform is the development

methodologies employed in the creation of the secure platform software. Mature Secure

Development means that sound security practices are in place and rigorously followed

and validated. These practices can, of course, be tweaked and advanced, but it does not

mean that each time a platform is developed the secure development process is re-

invented, and relearned.

In the Development and Test phase, major stakeholders include, hardware, firmware and

software developers and validation engineers.

Manufacturing

The supply chain presents an inviting target for secure platform subversion. There are

many known cases where viruses have been placed into platforms in manufacturing, and

certainly many, many more such cases kept secret. Secure platform manufacturing

requires that you know and are able to trust the manufacturer and their manufacturing

practices. In order to do this, you should specify your secure manufacturing requirements

and qualify your factory and their processes against those requirements. And this means

you will probably want to audit your factory from time to time to help confirm

compliance.

There are several potential areas where you and your manufacturer may work together on

security. One opportunity includes the use of trusted computing technology. If you use

the Trusted Platform Module (TPM) and other specifications from the Trusted

Computing Group (TCG), you can provide expected values of the platform state, as

recorded by the TPM and the TCG-aware firmware, which can be used to assure that the

platform was not altered in certain ways. More on the use of TCG capabilities is provided

elsewhere this paper.

The manufacturing phase may also be utilized to establish white and black lists for

various technologies and may be the best place to enable UEFI Secure Boot User Mode,

for example. Based on a given deployment strategy, this may preset your platform policy

and prevent unauthorized changes in the following platform life-cycle phases.

 8

Stakeholders to the Manufacturing phase are system engineers, manufacturing engineers,

and hardware and firmware developers.

Deployment

In Deployment, too, one must be cognizant of security threats. Understanding the use

environment and configuring the platform appropriately can raise its security posture.

There are aspects of end-user provisioning, “taking ownership”, etc. that are key in the

Deployment phase. In the case of deploying a tightly managed server, for example, one

may want to retain TPM ownership with the management entity.

The Deployment phase is largely the concern of the IT guy or security admin.

Production

The Production life-cycle phase is where the platform does its intended work. This is

where the platform is being used to process data, crunch numbers, host or view a website,

etc. Platform security in the production phase may appear to be completely determined by

choices made in previous life-cycle phases, but this is no time to rest of your laurels. One

has to be aware that a platform in production often requires updates to firmware,

software, and sometimes to physical IO devices as represented by PCIe cards, for

example.

A subset of the production phase is maintenance. The platform must be available to

consume updates, patches, and other activities to evolve the system in the face of

discovered flaws or emergent threats in the market. Here we should look to leverage

initiatives that define Trusted Roots for Update (RTU), such as NIST SP 800-147, for

example. This publication describes a secure update scheme that seeks to protect the

platform from untrusted firmware updates by prescribing a single, non-bypassable update

path, locked NVRAM firmware storage devices, and authenticated firmware updates

only.

Production phase concerns the IT guy, security admin, IaaS or SaaS provider, and end

user.

End of Life

After its useful Production life, a platform is either trashed or repurposed. Trashed

platforms are typically picked apart and components are recycled or repurposed. Or, the

entire platform may be repurposed – redeployed into another operational environment. In

any case, the secure life-cycle of that platform has not ended until any data, secret or not,

has been cleaned from that platform.

Stakeholders at end of life are the previous user or owner, as well as the receiving user or

owner.

 9

Summary

In this chapter we took a secure platform life-cycle view of security touch-points and

highlighted specific areas of concern and the parties who might have a specific interest in

those areas. The reader should take away a strong notion that platform security is not

adequately applied in just a single phase of the platform’s life-cycle, rather, done right,

platform security requires attention from concept to EOL.

In the next chapter, we will dive more deeply into the secure platform Production life-

cycle phase and explore the application of specific security initiatives.

 10

Application of Security Initiatives

In this chapter, we will explore the Production phase of the secure platform’s life-cycle

with emphasis on specific initiatives that can play a profound role in platform security.

Having highlighted the entire secure platform life-cycle above, here we focus on the most

active life-cycle phase.

There are currently several security initiatives being developed by various bodies around

the PC industry. These range from Trusted Computing Group initiatives centered around

the concepts of Trusted Measurement and Trusted Store, to methods of securing the

loading of enabling firmware in a secure chain manner, to silicon-based techniques to

create pure, unadulterated memory execution regions into which one can launch an

Operating System or Virtual Machine Monitor with certainty that no unknown code

resides in that space.

Many of these technologies are applicable to the boot process of a deployed platform in

its normal production life-cycle phase. An example of how these various technologies

and initiatives align during a PC boot cycle might look similar to the following:

Trust Measurement

Production Life Cycle

Platform under
management
control but not
actively
operational.

Silicon-based
secure state late
launch.

UEFI Firmware
execution state. Passing control

from pre-OS to
OS/VMM executing
state.

OS/Hypervisor
executing state.

Trusted Root of
Update

Secure boot

D-RTMS-CRTM

Managed
Pool
State

Pre-OS
State

Late
Launch
State

Post-OS
State

Clear Secrets

OS Boot
State

OS/VMM
State

Platform “after-
life”; i.e. Post-OS.

Figure 2 Production Life-Cycle

This diagram shows a detailed view of a portion of the secure platform’s life-cycle

focused around its deployed and managed Production state. This may apply to a managed

 11

server or client platform, which are quite common use models. At the left of the diagram

the secure platform resides in S5 state, powered off, but with a management entity, either

service processor (BMC) or management engine awake and attached to a management

infrastructure. We will call this the Managed Pool State. In this state the management

infrastructure may be capable of doing many things through its out of band interface. The

management infrastructure may be able to push firmware updates, power on the platform,

change the platform’s configuration via firmware settings, etc.

Managed Pool State

In this Managed Pool State, the platform’s security must be protected from rogue

firmware updates that might affect a root kit attack possibly infecting the most intimate

regions of the platform (e.g. SMM). Techniques centered around a comprehensive Root

of Trust for Update (RTU) such as described in NIST SP800-147A/B, when properly

implemented, can prevent rogue firmware from being updated into a platform. The

principles of SP 800-147 include locking the NVRAM device into which the boot

firmware is to be loaded and only unlocking when in a controlled update process. It also

requires that only a single pathway to the NVRAM device is available for updates and

that there is no bypass scheme to get around this single pathway. Further, and perhaps

most important is the requirement to update only signed images that authenticate by the

RTU. The principles of secure update apply not only to the boot loader firmware of the

platform (BIOS or UEFI firmware), but also to the service processor which might be in

the update chain for the above firmware. Even more importantly, in some cases the

service processor may be trusted to update the pre-OS firmware. So the Root of Trust for

Update must be extended or shifted to the entity actually doing the update.

In this Managed Pool state, the platform must be protected from secure data manipulation

or loss, from prohibited configuration settings which might cause failure to boot

(effecting Denial of Service). In some cases BIOS Setup may contain settings which

conflict with each other or the platform’s capabilities or that may be configured in such a

way as to cause a failure to boot. These must be searched for and removed before a

platform is deployed.

Pre-OS State

Upon application of power to the managed platform’s host processor complex, boot

firmware starts to execute on the host processor in what we will call the Pre-OS State. On

a PC platform this is the state classically represented as BIOS POST, or more currently as

UEFI firmware execution. In this state, the processor, chipset, memory and platform

peripherals, including add-in cards, are being initialized and configured to support the

launch of the Operating System. The code in this state is typically run in a single threaded

mode and with absolute highest privilege level.

On an x86 platform this early initialization code also is responsible for establishing

System Management Mode (SMM) and populating SMM specific memory with handlers

for various system maintenance support routines including server Reliability,

 12

Availability, and Serviceability (RAS) and a very wide range of runtime support services

which operate “behind” the Operating System itself.

The Pre-OS State configuration process may include execution of code introduced onto

the platform via add-in PCIe card-based peripherals. Such “alien” code, regardless of its

provenance, is presented to the host processor to be run at the same privilege level as the

rest of the boot firmware and therefore presents an obvious avenue to bring in rogue

code. And of course, the origins of the base Pre-OS firmware itself must also be

questioned.

It is at this point in the Production life-cycle of the platform, namely at reset, where we

can apply one of the most potentially significant security techniques; establishment of a

Core Root of Trust. It is here that we have the distinct ability, with the right hardware and

software, to establish a foundation from which we can not only securely go forward to

loading the OS but also securely capture detailed data from which we can later assure

acceptable secure state was achieved. The concept of a Core Root of Trust is based on the

establishment of the minimal Trusted Compute Base opportunity presented at host

processor reset.

The idea of a Trust Base is that someplace along the line one must decide to trust

something about the secure platform. This implies that the platform owner knows enough

about some part of the platform to be able to trust at least that much of it. As with a

trusted colleague, for example, one knows enough about that person to be able to

reasonably say what that person might do in a given predictable situation. Just as with a

trustable person, one can know that a secure platform is trustable in its Managed Pool

state because it is locked in their data center, for example. And they may know that their

data center ensures that the secure platform was not physically accessed by untrusted

persons. Therefore, that physical platform is trustable at least at the point of the beginning

of execution of add-on enabling code such as the UEFI firmware. One can be reasonably

sure that if the hardware itself was not accessed, then there is little chance indeed that the

logic baked into that secure platform will do anything other than go to the reset vector

address, fetch code, and begin executing that code according to the hardware’s design.

This point of trust is the launching point of Core Roots of Trust for authenticating the

balance of the code yet to come at run time and for launching a scheme known as code

measuring. This entails the establishment of a Core Root of Trust for Measurement.

The first instance of a Core Root of Trust for Measurement (CRTM) is often known as

the Static CRTM, or S-CRTM. The term Static denotes the fact that the CRTM is

anchored in one place, namely at processor reset. If the code making up the S-CRTM is

adequately trustable itself, it can be employed to authenticate the rest of the UEFI

firmware before allowing it to execute. The technique used to ensure that the S-CRTM

code is trustable is essentially to make that code immutable. That means that that code

came from one place – the OEM in most cases – and there is no currently known way to

alter that code after the platform leaves the OEM’s hands, short of physical possession

and alteration of the platform. This, of course, means that the immutable portion of the

code is locked or burned into a memory device and the host processor’s reset vector

 13

points into that device. There is no field update of this immutable code, and there is

tamper prevention on its storage device or said non-volatile memory is hidden away

inside some other larger logic device where it cannot be altered without altering a major

component of the platform. Of course is has to be noted that such measures do not come

without a cost and potential risk. The work required to develop the immutable code and

validate it to a point of such high reliability is costly indeed. For example, if the

immutable code is found to be buggy or somehow compromised once deployed to

Production, the secure platform must be returned to the OEM to be replaced.

The other S-CRTM usage is one of establishing a starting place from which to measure

the code that will be executed on the platform. The idea is again that we have a trustable

place to start doing some process that will span code from potentially many sources, most

outside of the OEM or platform owner’s control. For example, after the UEFI firmware

core executes, it starts loading third-party drivers, applications, add-in card drivers, OS-

loaders, Operating Systems, etc. The concept of “measuring” here means that the

platform literally takes a cryptographic hash of the next piece of code it is scheduled to

launch. Then subsequent code is also hashed, and so on and so forth. This presents a set

of fingerprints of the code, or even of platform configuration data, that was run on that

platform. These measurements must also be kept someplace safe or else they are

themselves subject to “evidence tampering”. The safe place is another TCG construct

known as the Trusted Platform Module (TPM) and in TCG such usage is known as

Trusted Storage. (See TCG specs tbd for details of Trusted Measure, Trusted Store.)

With the measurement data captured in the TPM, one can perform either a “real-time”

state based check, or one can retroactively analyze the measurement data to determine if

a certain state was indeed met. For example, taking the latter case, an agent running on

the secure platform can at some point in the Production boot cycle halt the platform, grab

the set of measurements from the TPM device on the secure platform, and utilizing a

trusted service, typically found on a trusted third party controlled database, determine if

the firmware executed on that secure platform matched the hashes of known good

firmware.

This implies of course that the trusted third party doing the checking has access to a set of

Golden Measures that match accepted secure platform measures. The process of checking

actual measures against golden measure is one of attestation. There may be more than

one set of golden measures. This is because there are likely more than one set of

acceptable configurations – given optional BIOS settings, optional boot device selection,

and so on possible for a given platform. With the determination of a match between

present and Golden measures , or not, the secure platform agent may be used to inform

secure platform policy as to whether and how secure platform may continue to boot and

into what operating domain it may be permitted. So, for example, if our measured

platform is found to have been configured to employ a USB boot device, policy may

dictate that the secure platform may not join the corporate network.

Beyond the S-CRTM which reads on firmware construction for purposes of an S-RTM

implementation, there are other concerns in platform construction. As an example, we

 14

will discuss a BIOS based upon the Unified Extensible Firmware Interface (UEFI)

Platform Initialization (PI) specification sets. The UEFI specifications are purposely

silent on construction intent and policy. Instead, these are pure interface specifications

that admit to conformance testing of the API’s. As such, some of the intent on usage of

these standards include which portions are platform supplier (PS) extensible and which

are platform owner (PO) extensible.

Figure 3 UEFI PI Boot Flow

 15

Figure 4 UEFI PI Software Layering Diagram

As you can see from the boot flow above, the SEC, PEI, and DXE all run prior to having

the UEFI services available. The UEFI specification describes a set of interfaces to the

platform, and the UEFI PI DXE phase acts as the UEFI core. In fact, the DXE core is the

preferred embodiment of the UEFI interfaces.

What is important to take away from the boot flow is that the left hand side of the flow

are platform supplier extensible. The UEFI PI components form the root of trust for

updates (RTU), the root of trust for measurement (RTM), and the root of trust for

verification (RTV). The RTU can be implemented via a DXE capsule update driver, the

RTM via a DXE TPM driver that publics the EFI_TCG_PROTOCOL, and finally, a set

of DXE modules that implement the RTV by means of implementing the authenticated

variables and UEFI 2.3.1c Secure Boot processing. The codes which implement the

RTU, RTV, and the RTM must be from the platform supplier (PS) in order to have

assurance regarding their behavior. The PS is sometimes known as the Platform

Manufacturer (PM) and the codes which are from the platform manufacturer are known

 16

as running under PM Authority, or PM_AUTH.

As distinct from PM_AUTH, the elements on the right hand side of the boot flow are

typically under control of the platform owner (PO). These PO extensible elements

include UEFI drivers, UEFI applications, and the operating system kernel.

Secure Boot

Regrettably, “Secure Boot” is a highly overloaded term in the industry. In the context of

the taxonomy in this paper, we introduce “Secure Boot” as a more generic capability as

distinct from measured boot. In measured boot, a record of the code execution is

provided into the PCR’s but no policy decisions are enacted. Secure Boot, on the other

hand, enforces policy prior to the execution of content. The code that implements the

Secure Boot logic is known alternatively as a Root of Trust for Verification (RTV) or

Root of Trust for Enforcement (RTE). The RTV can be a hardware embodiment that

vets the provenance of the UEFI PI firmware prior to passing control or it can be

implemented in UEFI for purposes of providing PO control of UEFI 3
rd

 party

executables. The latter usage is described in more detail below.

Figure 5 Verifiers in Pre-OS Space

 17

In the figure above, the platform hardware complex will provide logic to verify that the

ensuing BIOS storage container meets the policy of the platform supplier. Once this

restart time verification occurs, the PS PI code, such as the UEFI PEI phase, is

responsible for ensuring that the rest of the PS code meets policy. Today, the hardware

action is PS and/or hardware-supplier specific, and the ‘middle’ verification is PS

specification. Neither of these actions admits to industry standardization today.

Another very current security technique involves the authentication of the very images

that the UEFI firmware itself will be asked to execute. This capability was introduced in

UEFI Spec r2.3.1 and requires not only a compliant UEFI firmware but also requires

drivers signed in a compliant manner by their producer or a trusted third-party (CA).

Note that this technique does not apply to legacy BIOS because there is no standards-

based way to orchestrate the compatible signing of loadable BIOS objects. For UEFI

firmware, perhaps the most notable application of this technique, known as Secure Boot,

is the signing and authentication of the OS Loader itself. This is but one of many possible

applications of this technique, but is probably the most obvious because it involves the

signing and authentication of the one UEFI driver responsible for loading the Operating

System and because of its inherent security is now Required to load some operating

systems.

The idea behind this application of “secure boot” is that if the UEFI driver for loading the

OS, which comes from the OS vendor, is not found to be on the platform’s allowed list

(or conversely is found on the disallowed list) the assumption is that some party has

attempted to inject a rogue OS loader driver into the boot path and it is assumed,

therefore, that they intend to launch an OS unknown or unintended by the secure platform

owner. In other words, there is a strong chance that in such a case someone is trying to do

something untoward. It should also be noted that this technique of signing OS loaders

applies only to UEFI Native OS loading and does not apply to loading of legacy

operating systems. That is because legacy operating system loaders, while possibly

running “in” UEFI firmware itself, as is the case with a CSM-enabled platform, do not

employ a UEFI driver, and therefore there is no way to ensure conformance with a set

signing and authentication scheme.

Beyond the higher profile OS Loader signing, the UEFI image signing scheme can also

be employed to sign UEFI shell applications, or UEFI drivers of any type including third-

party drivers introduced via add-in cards. This is important because a secure platform

vendor or owner can now require that add-in card vendors, or even vendors of on-board

peripheral devices, provide signed UEFI drivers. This step helps ensure that the driver

introduced onto the secure platform can be authenticated against a known good list, or

rejected based on a known-bad list. Again, this capability does not apply to legacy BIOS

“Option ROM drivers” because there is no set standard for signing and authentication in

legacy BIOS. And again, this capability requires that the producer of the UEFI driver

which enables the add-in card complies with UEFI specification mandating signing types

and so on.

 18

Features like UEFI Secure Boot on a PC without a lower-level hardware root of trust to

cryptographically bind the NVRAM (flash) part to the motherboard should be resistant to

the hack attack, but not a shack attack (a shack attack involves physically placing illicit

components on a board, typically using off the shelf components e.g. Radio Shack). A

likely shack attack could be a ROM swap where someone either de-solders the system

board ROM or uses a Dediprog ® to reprogram the ROM. The XBOX1 was susceptible

to this class of attack, for example.

In general it is unlikely that Commercial off the Shelf (COTS) technology, as described

in this paper, can be resistant to an adversary with the resources to launch a lab-class

attack.

Late Launch State

Moving forward in boot time, we encounter other opportunities to apply platform security

technologies at the firmware layer. Late Launch is a term that refers to the capability of

placing a running platform, which has passed the Pre-OS and possibly the OS launch

state, into a new, secure machine state. In TCG terms, this capability is referred to as D-

RTM.

D-RTM

A less frequented Root of Trust for Measurement, perhaps, the D-RTM is a highly silicon

centric means of establishing a secure launching place for an OS or VMM. This

technique is enabled in vendor specific ways by at least a couple major platform silicon

providers as of this writing, varies in its implementation, but always requires specific

silicon to enable. If said silicon is available on our secure platform, we can affect a D-

RTM at any point in time and repeatedly enter and exit the D-RTM state without a

platform reset. The most obvious application of this capability is to establish a clean slate,

if you will, from which to launch a Virtual Machine Manager.

The D-RTM requires that the BIOS be compliant in that it carries certain enabling code

modules, originating from the silicon vendor and added to the OEM’s BIOS, which is

typically authenticated on the platform before being executed. This code is generally

architecture-intimate, similar to micro-code, and is part of the total scheme to create the

clean slate platform state. Of course, to make this work the platform must also somehow

be configured to deal properly with DMA, and with IO accesses which could dirty the

otherwise clean slate. To that end, there will often be associated requirements for other

virtualization capabilities on your platform, and these must be enabled as directed.

The D-RTM is in effect less about measurement than about creating a pristine operational

state on the fly, but measurement of the components of the D-RTM scheme and

measurements of the providers of said components are captured and potentially used to

unseal platform state information or to provide attestation opportunities as with the C-

RTM described above and by the TCG.

 19

Persistent Memory Resident Platform Information Spanning Boot

As part of informing the OS of platform specific configuration, requirements and specific

methods to handle certain aspects of the platform, such as power management, the UEFI

firmware builds tables in system memory and passes a pointer to same to the OS after

UEFI firmware exits. Since these tables exist in memory passed from UEFI firmware to

Operating System, they should be examined in a secure platform context as well.

ACPI
As part of managing platform power, ACPI information is passed from the platform

UEFI firmware to the OS via persistent memory structure. Because this memory structure

persists across the handoff from UEFI firmware to OS, and is unprotected, it must be

examined as a potential attack surface. One could potentially alter the data in this table

and conceivably cause abhorrent behavior which could overheat a platform or conversely

severely limit its processing speed, for example. It is conceivable to augment this

structure with a hash value or even to place this structure into protected memory.

However, neither the ACPI specification nor the UEFI specification details requirements

or means to protect this memory structure.

SMBIOS
The SMBIOS table consists of both static and dynamic data which is created by the UEFI

firmware during execution of power on based in part on dynamic platform configuration.

This data is also passed to the OS through a memory mapped structure. SMBIOS data is

not generally considered critical operational data, and is rather used to inform platform

policy and control. This data is most often consumed by platform management.

Subversion of this data may cause misbehavior or worse, mis-configuration or mis-

application of platform management policies. These can, in theory, lead to a DoS

situation.

Post OS State

One typically assumes that after the OS shuts down the platform is quiesced, all data is

gone, the slate is cleaned and we are ready to start all over again with application of

power and a fresh boot cycle. Not necessarily true. Secrets may persist in memory

through a reboot cycle, after OS exits, either intentionally or not.

One intentional use of persistent memory across a reset is to pass configuration or update

information “back” to the UEFI firmware. There may also be other areas of memory that

contain secrets that could unintentionally persist across a reset cycle. For these reasons,

care must be taken to ensure that secrets in memory are either fully flushed, sequestered

into protected memory regions, or are protected by encryption,

Summary

This chapter used a platform life-cycle view to point out specific security concerns and

recommend application of various technologies and practices to address them. Many of

the applied technologies are open standards based, which makes application and

 20

interaction viable for many secure platform developers. Some of the technologies

discussed require specific hardware devices, but these are considered important potential

additions to a secure platform because of their relationship to a secure Root of Trust

based in hardware, and therefore they are inherently more resistant to attack via

introduced malware.

 21

Conclusion

This paper has attempted to take a holistic view of platform security technologies and

initiatives presently available to most x86 platform developers, whether client or server,

and discuss their relevance based on a secure platform life-cycle. While this list is not

exhaustive and there are certainly proprietary methods to achieve facets of platform

security in practice, we hope to have given a grander view of the security challenges and

the application of potential solutions in an easy to follow and digest narrative.

It should also be very clear from this paper that the present state of platform security is

far from perfected and is best thought of as a palette of solutions which must be

understood and properly applied; and even so, today’s palette leaves opportunities for

clever attack and exploitation.

 22

Glossary

Glossary Item Definition

ACPI Advanced Configuration and Power Interface specification.

Attestation Attestation refers to a process of confirming a platform state or

measure.

BDS A UEFI firmware phase where in boot devices are selected.

BIOS The term for x86 boot firmware that predates UEFI compliant

firmware.

BMC Baseboard Management Controller; a ‘service processor’ as

defined by the IPMI specification. Usually found on a managed

platform such as a server.

CA Certificate Authority;

CRTM Core Root of Trust for Measurement; a platform operational

state which serves as a trusted place to perform security

operations like measurement.

CSM Compatibility Source Module; a UEFI adjunct that enables

legacy BIOS-like capabilities.

DoS Denial of Service; a specific type of platform attack meant to

make the platform in some way unable to perform its intended

tasks.

DRTM Dynamic Root of Trust for Measurement; a TCG term for a

RTM that can be launched after a CRTM; is highly platform

silicon centric.

DXE A UEFI firmware execution phase that is by design open and

enables add-on drivers and devices in pre-OS space.

EOL End of Life; the last life-cycle phase for a platform.

Golden Measure A Golden Measure is a measurement that is made of a known

platform configuration and provided as input to an attestation

scheme, for example.

Hack Attack A platform attack that involves primarily software techniques

and typically does not include physical access to the platform.

Hypervisor See VMM

IPMI Intelligent Platform Management Interface; an open standard

defining a server management infrastructure and interfaces.

IT Information Technology

IaaS Infrastructure as a Service; managed platform provider.

ME Management Engine; an embedded management service

processor typical of Intel x86 platforms.

Measurement This term refers to the act of capturing a uniquely identifying

piece of information about a software or firmware component; in

practice the component is usually hashed and that hash is stored

securely for later analysis or decision making,

NIST SP800-147A/B Special Publication detailing a means of performing secure BIOS

 23

update on client and server platforms.

NVRAM Non-Volatile Random Access Memory

ODM Original Device Manufacturer; often refers to a contract

manufacturer of hardware platforms.

OEM Original Equipment Manufacturer; the entity who produces the

hardware platform.

OSV Operating System Vendor

PCIe PCI Express; used here largely to define add-in IO devices

PCR Platform Configuration Register; a TCG term defining registers

within a TPM used to capture platform measures.

PEI Early phase of UEFI firmware execution that is closed by design

and functions to enable critical onboard and firmware resources.

RTE Root of Trust of Enforcement;

RTM Root of Trust for Measurement; a TCG term that defines where

secure “measurement” starts.

RTR Root of Trust for Reporting; a TCG term that indicates a secure

device that is used to convey security information such as

measurements.

RTS Root of Trust for Storage; a TCG term that indicates a secure

device that can retain data such as measurements.

RTU Root of Trust for Update; a term that defines a hardware rooted

update scheme, for example SMI based firmware update.

RTV Root of Trust for Verification; a term that defines a rooted

verification entity.

SaaS Software as a Service; a platform provided to host user

applications typically in a Cloud.

S-CRTM Static CRTM; a CRTM that is tied to a immutable hardware

event such as reset.

SEC A UEFI firmware phase that precedes PEI and is the first UEFI

defined firmware phase. This firmware phase is typically quite

brief and contains OEM specific code and not extensible at

runtime.

Shack Attack A platform attack that utilizes physical access and relatively low-

cost methods based on tools and techniques readily available to

the hobbyist or enthusiast.

SMBIOS A standard defining a data structure and interface which details

many aspects and capabilities of a platform. This table is

typically created by UEFI firmware and consumed by OS.

SMM System Management Mode; a processor functional mode that

executes out of discrete memory segment and is invisible to the

hosted OS or VMM. SMM is programmed into the platform by

the UEFI firmware and operates during platform

runtime/Production.

TCG Trusted Computing Group; an open consortium of hardware,

silicon, software and firmware vendors which seeks to define

 24

secure platform initiatives.

UEFI Unified Extensible Firmware Interface; the open standard

specification that dictates the interfaces to and services of a

UEFI firmware implementation.

VM Virtual Machine; a virtualized operating environment created by

a VMM.

VMM Virtual Machine Monitor; a software system that runs either on

or in place of an OS and creates VMs. See also hypervisor.

VMMV VMM Vendor

References

[Authenticode] Windows Authenticode Portable Executable Support

http://www.microsoft.com/whdc/winlogo/drvsign/Authenticode_PE.mspx

[EDK2] EFI Developer Kit www.tianocore.org

[FRAMEWORK] Intel Framework Specifications www.intel.com/technology/framework

[HIPAA] Health Insurance Portability and Accountability Act, http://www.hipaa.org/

[IBM TCG] Challener, et al, A practical guide to trusted computing, IBM Press, 2008

[PCI] Payment Card Industry, https://www.pcisecuritystandards.org/

[RSA] PKCS#1: RSA Cryptography Standard, Version 2.1

http://www.rsa.com/rsalabs/node.asp?id=2125

[Secure Computing Book] David Grawrock, Dynamics of a Trusted Platform, 2
nd

 edition,

Intel Press, 2009

[SHA] Secure Hash Algorithm, FIPS 180-2 http://csrc.nist.gov/publications/fips/fips180-

2/fips180-2.pdf

[TCG Overview] Trusted Computing Group Benefits,

http://www.trustedcomputinggroup.org/trusted_computing/benefits

[TCG Main] TCG TPM Main specification, version 1.2 www.trustedcomputinggroup.org

[TCG PC] TCG PC Client Specification, version 1.2 www.trustedcomputinggroup.org

[TCG EFI Platform] EFI TCG Platform Specification, version 1.2

www.trustedcomputinggroup.org

http://www.microsoft.com/whdc/winlogo/drvsign/Authenticode_PE.mspx
http://www.tianocore.org/
http://www.intel.com/technology/framework
http://www.hipaa.org/
https://www.pcisecuritystandards.org/
http://www.rsa.com/rsalabs/node.asp?id=2125
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf
http://www.trustedcomputinggroup.org/trusted_computing/benefits
http://www.trustedcomputinggroup.org/
http://www.trustedcomputinggroup.org/
http://www.trustedcomputinggroup.org/

 25

[TCG EFI Protocol] EFI TCG Protocol Specification, version 1.2

www.trustedcomputinggroup.org

[TCG TIS] TCG TPM Interface Specification www.trustedcomputinggroup.org

[THREAT] Frank Swiderski, Window Snyder “Threat Modeling,” Microsoft

[TRUSTZONE] http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-

009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf

[UEFI Book] Zimmer, Rothman, Marisetty, Beyond BIOS 2nd edition, Intel Press, 2010,

http://www.intel.com/intelpress/sum_efi2.htm

[UEFI Main Specification] UEFI Specification, Version 2.3 www.uefi.org

[UEFI Overview] Mark Doran, Vincent Zimmer, Michael Rothman, "Beyond

BIOS: Exploring the Many Dimensions of the Unified Extensible Firmware Interface,"

in Intel Technology Journal - UEFI Today: Boostrapping the Continuum, Volume 15,

Issue 1, pp. 8-21, October 2011, ISBN 978-1-934053-43-0, ISSN 1535-

864X http://www.intel.com/technology/itj/2011/v15i1/index.htm

http://www.intel.com/technology/itj/2011/v15i1/pdfs/Intel-Technology-Journal-

Volume-15-Issue-1-2011.pdf

[UEFI PI] Isaac Oram, Tim Lewis, Vincent Zimmer, "Silicon Enabling in a Modular

Architecture," in Intel Technology Journal - UEFI Today: Boostrapping the

Continuum, Volume 15, Issue 1, pp. 22-39, October 2011, ISBN 978-1-934053-43-0,

ISSN 1535-864X http://www.intel.com/technology/itj/2011/v15i1/index.htm

http://www.intel.com/technology/itj/2011/v15i1/pdfs/Silicon-Enabling-in-a-Modular-

Architecture.pdf

[UEFI Security] Magnus Nystrom, Martin Nicholes, Vincent Zimmer, "UEFI

Networking and Pre-OS Security," in Intel Technology Journal - UEFI

Today: Boostrapping the Continuum, Volume 15, Issue 1, pp. 80-101, October 2011,

ISBN 978-1-934053-43-0, ISSN 1535-

864X http://www.intel.com/technology/itj/2011/v15i1/index.htm

http://www.intel.com/technology/itj/2011/v15i1/pdfs/UEFI-Networking-and-Pre-OS-

Security.pdf

[UEFI Secure Boot] Rosenbaum, Zimmer, "A Tour Beyond BIOS into UEFI Secure

Boot," Intel Corporation, July 2012,

http://iweb.dl.sourceforge.net/project/edk2/General%20Documentation/A_Tour_Bey

ond_BIOS_into_UEFI_Secure_Boot_White_Paper.pdf

[UEFI Shell Book] Rothman, Lewis, Zimmer, Hale, UEFI Shell, Intel Press, 2009,

http://www.intel.com/intelpress/sum_eshl.htm

[UEFI Overview] Zimmer, Rothman, Hale, “UEFI: From Reset Vector to Operating

System,” Chapter 3 of Hardware-Dependent Software, Springer, February 2009

http://www.trustedcomputinggroup.org/
http://www.trustedcomputinggroup.org/
http://www.amazon.com/exec/obidos/search-handle-url/index=books&field-author-exact=Frank%20Swiderski&rank=-relevance%2C%2Bavailability%2C-daterank/102-8968465-0841719
http://www.amazon.com/exec/obidos/search-handle-url/index=books&field-author-exact=Window%20Snyder&rank=-relevance%2C%2Bavailability%2C-daterank/102-8968465-0841719
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://www.intel.com/intelpress/sum_efi2.htm
http://www.uefi.org/
http://www.intel.com/technology/itj/2011/v15i1/index.htm
http://www.intel.com/technology/itj/2011/v15i1/pdfs/Intel-Technology-Journal-Volume-15-Issue-1-2011.pdf
http://www.intel.com/technology/itj/2011/v15i1/pdfs/Intel-Technology-Journal-Volume-15-Issue-1-2011.pdf
http://www.intel.com/technology/itj/2011/v15i1/index.htm
http://www.intel.com/technology/itj/2011/v15i1/pdfs/Silicon-Enabling-in-a-Modular-Architecture.pdf
http://www.intel.com/technology/itj/2011/v15i1/pdfs/Silicon-Enabling-in-a-Modular-Architecture.pdf
http://www.intel.com/technology/itj/2011/v15i1/index.htm
http://www.intel.com/technology/itj/2011/v15i1/pdfs/UEFI-Networking-and-Pre-OS-Security.pdf
http://www.intel.com/technology/itj/2011/v15i1/pdfs/UEFI-Networking-and-Pre-OS-Security.pdf
http://iweb.dl.sourceforge.net/project/edk2/General%20Documentation/A_Tour_Beyond_BIOS_into_UEFI_Secure_Boot_White_Paper.pdf
http://iweb.dl.sourceforge.net/project/edk2/General%20Documentation/A_Tour_Beyond_BIOS_into_UEFI_Secure_Boot_White_Paper.pdf
http://www.intel.com/intelpress/sum_eshl.htm

 26

[UEFI PI Specification] UEFI Platform Initialization (PI) Specifications, volumes 1-5,

Version 1.2 www.uefi.org

http://www.uefi.org/

 27

Authors

Bill Jacobs (billjac@cisco.com) is a Technology Leader in Cisco’s UCS

server development organization.

Vincent J. Zimmer (vincent.zimmer@intel.com) is a Principal

Engineer with the Software and Services Group at Intel Corporation.

mailto:billjac@cisco.com
mailto:vincent.zimmer@intel.com

 28

This paper is for informational purposes only. THIS DOCUMENT IS PROVIDED "AS IS" WITH

NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY,

NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY

OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE. Intel disclaims

all liability, including liability for infringement of any proprietary rights, relating to use of

information in this specification. No license, express or implied, by estoppel or otherwise, to

any intellectual property rights is granted herein.

Intel, the Intel logo, Intel. leap ahead. and Intel. Leap ahead. logo, and other Intel product

name are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the

United States and other countries.

*Other names and brands may be claimed as the property of others.

Copyright 2012 by Intel and Cisco. All rights reserved

