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Executive Summary 
This paper is an overview of security technologies as applies to current PC systems. The goal of 

this paper is to contrast and compare various security technologies, initiatives, and practices that 

may be applied to client or server x86 platforms. These technologies range from silicon-based to 

standards-based. Here we are not intending to prescribe certain technologies, rather our goal is to 

define all of these disparate technologies in one place, show how these various technologies 

complement each other, indicate where they may overlap or leave gaps, and illustrate how they 

can be applied to help secure your platform. 

 

This paper is mainly intended for hardware, firmware, software, and BIOS engineers.   But 

beyond this audience, some of the information in this paper will be valuable for IT decision 

makers, marketing, and other parties. 

 

The reader should take away an understanding of the motivations behind trusted platform design, 

the terminology of trust, how to navigate the Trusted Computing Group specifications and 

technology that relate to the platform, impact on platform firmware and UEFI, instances of 

deployment in the market, and some future possible directions for hardware and firmware. 

 

The views and opinions of the authors do not necessarily reflect the views of Cisco Systems, Inc. 

and Intel Corporation, or their respective affiliates. 
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Overview 

This section will describe an overview of the ensuing chapters. 

 

Description of each chapter 
We start by describing the present state of computing as related to security issues, 

focused on the platform itself.  This chapter should be of interest to BIOS developers 

interested in how their efforts relate to the larger class of business and market concerns, 

all the way to the IT staff making procurement decisions based upon their particular risk 

profile. 

 

Next we explore solutions in a life-cycle perspective so that we may illustrate where 

specific technologies and initiatives apply to platform security. Here we seek to show that 

secure platform design can leverage many technologies from various sources, and that 

these technologies can be complementary when properly applied.  This chapter should be 

of interest to IT decision makers who have to ensure that their investment is consistent 

with their overall strategy around capital deployment.   This section is also of interest to 

the system architects at platform manufacturers who need to balance the security 

properties of their product with other competing requirements, such as manageability, 

cost, and performance. Within each of these chapters we add a secure design participant 

view of the platform, highlighting areas of specific interest to various parties ranging 

from the marketer seeking to establish a security requirements list to the BIOS developer 

desiring to know how to apply technologies, and we tie these views back to the life-cycle 

perspective given earlier. The hope is that these various approaches enable crisper 

takeaways for various reader perspectives. 

 

The conclusion will provide a recap of some key points and summary of the items treated 

in the preceding chapters. 

 

Summary 
This chapter has provided a roadmap to reviewing the successive sections of this paper. 
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Problems to solve 

In this initial chapter on “Problems to Solve,” some motivation for the development of 

platform trust is covered.   Specifically, the many concerns found in the industry around 

security are discussed. 

 

Problem background 

 

In the past, proprietary security solutions, non-open standards based initiatives, and 

confusing terminology have meant that applying effective security to an x86 platform has 

been difficult and costly. And the proliferation of solutions has led customers to have to 

understand all of the competing solutions, determine how to make disparate products 

interplay, and in many cases, create custom middle-ware solutions and agents to manage 

them.  

 

While it is true that standardizing interfaces may in fact invite attacks, taking for example 

UEFI firmware’s open standard BIOS replacement, such a move also brings with it 

opportunities to create effective counter measures that everyone can apply and in so 

doing, effectively strengthens the standard solution for all. 

 

Further, Operating System vendors (OSVs), hypervisor and virtual machine monitor 

vendors (VMMV’s), original equipment manufacturers (OEM’s), and Information 

Technology (IT) staff all want to enjoy the open platform.   This allows for amortizing 

development costs across a large class of systems and the ability to procure platforms 

from different vendors.   As part of this openness and choice, though, the trustworthiness 

of the underlying platform must remain. 

 

 

Key points 
Security isn’t hype, but a real market need. Security can also be a moving target if open 

system design is your goal. 

 

Summary 
This chapter has provided a brief introduction to some of the business problems and 

threats that will motivate the development of trusted platforms. 
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Secure Platform 

Fortunately, in addition to the numerous and ever increasing threats to platform security, 

there are several initiatives and applicable technologies specifically designed to counter 

these threats. Many, if properly applied, can anchor a strong trust chain to the hardware 

layer and make penetration into platform firmware and above more difficult.  

 

This chapter moves into solution space by presenting a secure platform life-cycle and 

addressing the security initiatives, technologies, and techniques involved in 

comprehensive secure platform development and deployment. Here we will elaborate on 

many of the myriad of commonly, and less-commonly, referenced terms applied by 

various organizations for platform security. 

 

Secure Platform Life Cycle 

In order to adequately address the possible security gaps on these platforms, one has to 

take a holistic view of the entire life-cycle of the platform from concept to end of life 

decommissioning or repurposing. It is not sufficient to simply try to patch up a platform 

with “bolt-on security”. In fact, security counter-measures must be as deeply rooted as an 

attack might go. For example, protecting the firmware cannot be effective with only 

operating system-level measures. Additionally, in order to create a truly secure platform, 

design practices must also be employed in all facets of development – hardware design 

working in concert with sound coding practices, sane deployment and management 

schemes, as well as secure operating and maintenance environments must all be 

addressed. Finally, one must also think about the possibility of secure data (e.g. keys) 

persisting after a platform has been “decommissioned”. 
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Platform Life Cycle

Design Dev/Test Mfg Deploy Production EOL /Re-purpose

Select 
defensible 
architectures 
and 
components, 
and choose 
compatible 
security 
technologies.

Employ security 
practices such as 
Safe C, static 
analysis, device 
hardening, etc.

Build a secure 
eco-system and 
supply chain 
with your 
partners.

Enabled and 
Provision 
Security 
features. Employ secure 

maintenance 
practices such 
as Signed and 
Authenticated 
updates.

Clear secrets 
from 
permanent 
media and 
NVRAM.

 
Figure 1 Platform Life-Cycle 

 

The above timeline illustrates where security should be addressed in order to produce a 

life-cycle secure platform. From this diagram it is obvious that a platform’s security must 

be addressed from inception to end of life. We believe there are no phases which can be 

ignored without imperiling the platform’s secure use. Below we will expand on each 

phase of the Secure Platform Life-Cycle.  

Design Phase 

When conceptualizing a new PC platform, one must think of the mission or use-case for 

that platform. Included in that use-case analysis one must consider its security/threat 

environment and security requirements. If the platform is required to meet any security 

requirements, which may be market-driven or may be required by your own 

organization’s security policies, then a review of the hardware-firmware-OS stack 

relative to the threat environment must be under taken in order to understand where 

potential issues lie. 

 

Here we may even want to create a formal Threat Model of the platform and understand 

based on physical interfaces, software APIs, management control points, use-model, the 

user, and functionality where potential attacks may come from. This analysis should be 

detailed enough to consider protocols employed across the many potential interfaces to 

the secure platform. The results of this analysis will inform the designers of the platform 

of specific threats via specific channels. 
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With this information we want to choose the technologies and make the explicit design 

decisions that support the level of security we are after. This may involve platform 

architectural decisions, specific silicon or firmware choices, auxiliary device add-on 

selections, etc. Here the designer should be thinking in terms of Trust Boundaries; that is, 

thinking about areas that we can inherently trust and how to leverage these into building 

trust generally on the platform. Some of these decisions may impact assumptions or pre-

conceived design ideals. The point is, Security must be approached as any other use-case 

feature decision on your secure platform, and should not be applied only as an after-

thought once development has begun. 

 

Here you will want to leverage the initiatives of industry groups like Trusted Computing 

Group (TCG) and government organizations like (US Government) NIST. It is also 

highly advisable to consult with your silicon vendor, ODM partners, firmware providers, 

any add-in IO card or device providers, OS vendors and the rest of your eco-system 

partners to confirm that you have explored all options for platform security. Each of these 

components can expose attack surfaces on your platform so each must be addressed in a 

comprehensive way. Again, in most platforms based on off-the-shelf components, a 

holistic solution that is based on open standards has a better chance of playing well 

together to positively affect security on your platform than one-off, home-grown custom 

solutions. 

 

Also, special attention should be placed on understanding the software as well as 

hardware requirements that build platform security.  Many times hardware security is 

augmented by software changes, and vice versa. 

 

Stakeholders with particular interest in the Design phase are planners and marketers as 

well as platform architects.   

Development and Test Phase 

The specific requirements called out in the Design Phase are to be addressed in this 

Development and Test Phase. This means that the initiatives, components and 

requirements of the Design phase are integrated into the platform and made to function, 

and validated as such.  

 

Leveraging secure development practices in the platform Development and Test phase 

will go a long way toward comprehensive secure platform development. In fact, many 

hygiene practices such as employing Safe C libraries, static code analysis, ensuring 3
rd

 

party code is free of back doors, and so on should be part of any mature, secure 

development organization. If these practices are not part of your organization’s DNA, 

then they should be explicitly called out as Requirements and tracked. In either case, 

testing should always seek to verify that safe development practices were adhered to.  

 

The Development and Test phase is where you will want to establish practices, methods, 

and tools for entering keys, and provisioning security devices with platform manufacturer, 

and in some cases, platform owner data. Here you will want to work out how to sign code 

modules and images which support authenticated update and secure loading schemes. 
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Examples are signing of BIOS updates, programming launch control policies, and so on. 

 

Other portions of the development phase include testing.   This can be positive testing, 

such as the UEFI Self-Certification Tests (SCT’s) or the Trusted Platform Module (TPM) 

compliance tests.  Herein, the device under test is subjected to expected or specified input 

values and the system is observed to see if the expected output or return values occur.   

This is as opposed to negative testing, or fuzzing, where unexpected inputs are injected 

and the system is observed to see if it survives and continues functioning or enters the 

appropriate remediation or recovery mode. Both positive and negative testing have a 

place in testing secure platforms. 

 

Maturity of Secure Development Practices 

Another key technique in the development of a truly secure platform is the development 

methodologies employed in the creation of the secure platform software. Mature Secure 

Development means that sound security practices are in place and rigorously followed 

and validated. These practices can, of course, be tweaked and advanced, but it does not 

mean that each time a platform is developed the secure development process is re-

invented, and relearned.  

 

In the Development and Test phase, major stakeholders include, hardware,  firmware and 

software developers and validation engineers.  

 

Manufacturing 

The supply chain presents an inviting target for secure platform subversion. There are 

many known cases where viruses have been placed into platforms in manufacturing, and 

certainly many, many more such cases kept secret. Secure platform manufacturing 

requires that you know and are able to trust the manufacturer and their manufacturing 

practices. In order to do this, you should specify your secure manufacturing requirements 

and qualify your factory and their processes against those requirements. And this means 

you will probably want to audit your factory from time to time to help confirm 

compliance. 

 

There are several potential areas where you and your manufacturer may work together on 

security.  One opportunity includes the use of trusted computing technology. If you use 

the Trusted Platform Module (TPM) and other specifications from the Trusted 

Computing Group (TCG), you can provide expected values of the platform state, as 

recorded by the TPM and the TCG-aware firmware, which can be used to assure that the 

platform was not altered in certain ways. More on the use of TCG capabilities is provided 

elsewhere this paper. 

 

The manufacturing phase may also be utilized to establish white and black lists for 

various technologies and may be the best place to enable UEFI Secure Boot User Mode, 

for example. Based on a given deployment strategy, this may preset your platform policy 

and prevent unauthorized changes in the following platform life-cycle phases. 
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Stakeholders to the Manufacturing phase are system engineers, manufacturing engineers, 

and hardware and firmware developers. 

 

Deployment 

In Deployment, too, one must be cognizant of security threats. Understanding the use 

environment and configuring the platform appropriately can raise its security posture. 

 

There are aspects of end-user provisioning, “taking ownership”, etc. that are key in the 

Deployment phase. In the case of deploying a tightly managed server, for example, one 

may want to retain TPM ownership with the management entity. 

 

The Deployment phase is largely the concern of the IT guy or security admin. 

Production 

The Production life-cycle phase is where the platform does its intended work. This is 

where the platform is being used to process data, crunch numbers, host or view a website, 

etc. Platform security in the production phase may appear to be completely determined by 

choices made in previous life-cycle phases, but this is no time to rest of your laurels. One 

has to be aware that a platform in production often requires updates to firmware, 

software, and sometimes to physical IO devices as represented by PCIe cards, for 

example. 

 

A subset of the production phase is maintenance. The platform must be available to 

consume updates, patches, and other activities to evolve the system in the face of 

discovered flaws or emergent threats in the market. Here we should look to leverage 

initiatives that define Trusted Roots for Update (RTU), such as NIST SP 800-147, for 

example. This publication describes a secure update scheme that seeks to protect the 

platform from untrusted firmware updates by prescribing a single, non-bypassable update 

path, locked NVRAM firmware storage devices, and authenticated firmware updates 

only. 

 

Production phase concerns the IT guy, security admin, IaaS or SaaS provider, and end 

user. 

End of Life 

After its useful Production life, a platform is either trashed or repurposed. Trashed 

platforms are typically picked apart and components are recycled or repurposed. Or, the 

entire platform may be repurposed – redeployed into another operational environment. In 

any case, the secure life-cycle of that platform has not ended until any data, secret or not, 

has been cleaned from that platform.  

 

Stakeholders at end of life are the previous user or owner, as well as the receiving user or 

owner.  
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Summary 

In this chapter we took a secure platform life-cycle view of security touch-points and 

highlighted specific areas of concern and the parties who might have a specific interest in 

those areas. The reader should take away a strong notion that platform security is not 

adequately applied in just a single phase of the platform’s life-cycle, rather, done right, 

platform security requires attention from concept to EOL. 

 

In the next chapter, we will dive more deeply into the secure platform Production life-

cycle phase and explore the application of specific security initiatives.  
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Application of Security Initiatives 

In this chapter, we will explore the Production phase of the secure platform’s life-cycle 

with emphasis on specific initiatives that can play a profound role in platform security. 

Having highlighted the entire secure platform life-cycle above, here we focus on the most 

active life-cycle phase. 

 

There are currently several security initiatives being developed by various bodies around 

the PC industry. These range from Trusted Computing Group initiatives centered around 

the concepts of Trusted Measurement and Trusted Store, to methods of securing the 

loading of enabling firmware in a secure chain manner, to silicon-based techniques to 

create pure, unadulterated memory execution regions into which one can launch an 

Operating System or Virtual Machine Monitor with certainty that no unknown code 

resides in that space.  

 

Many of these technologies are applicable to the boot process of a deployed platform in 

its normal production life-cycle phase. An example of how these various technologies 

and initiatives align during a PC boot cycle might look similar to the following: 

 

Trust Measurement

Production Life Cycle

Platform under 
management 
control but not 
actively 
operational.

Silicon-based 
secure state late 
launch. 

UEFI Firmware  
execution state. Passing control 

from pre-OS to 
OS/VMM executing 
state. 

OS/Hypervisor 
executing state.

Trusted Root of 
Update

Secure boot

D-RTMS-CRTM

Managed 
Pool
State

Pre-OS 
State

Late 
Launch 
State

Post-OS
State

Clear Secrets

OS Boot 
State

OS/VMM 
State

Platform “after-
life”; i.e. Post-OS.

 
Figure 2 Production Life-Cycle 

 

This diagram shows a detailed view of a portion of the secure platform’s life-cycle 

focused around its deployed and managed Production state. This may apply to a managed 
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server or client platform, which are quite common use models. At the left of the diagram 

the secure platform resides in S5 state, powered off, but with a management entity, either 

service processor (BMC) or management engine awake and attached to a management 

infrastructure. We will call this the Managed Pool State. In this state the management 

infrastructure may be capable of doing many things through its out of band interface. The 

management infrastructure may be able to push firmware updates, power on the platform, 

change the platform’s configuration via firmware settings, etc.  

 

Managed Pool State 

In this Managed Pool State, the platform’s security must be protected from rogue 

firmware updates that might affect a root kit attack possibly infecting the most intimate 

regions of the platform (e.g. SMM). Techniques centered around a comprehensive Root 

of Trust for Update (RTU) such as described in NIST SP800-147A/B, when properly 

implemented, can prevent rogue firmware from being updated into a platform. The 

principles of SP 800-147 include locking the NVRAM device into which the boot 

firmware is to be loaded and only unlocking when in a controlled update process. It also 

requires that only a single pathway to the NVRAM device is available for updates and 

that there is no bypass scheme to get around this single pathway. Further, and perhaps 

most important is the requirement to update only signed images that authenticate by the 

RTU. The principles of secure update apply not only to the boot loader firmware of the 

platform (BIOS or UEFI firmware), but also to the service processor which might be in 

the update chain for the above firmware. Even more importantly, in some cases the 

service processor may be trusted to update the pre-OS firmware. So the Root of Trust for 

Update must be extended or shifted to the entity actually doing the update.  

 

In this Managed Pool state, the platform must be protected from secure data manipulation 

or loss, from prohibited configuration settings which might cause failure to boot 

(effecting Denial of Service). In some cases BIOS Setup may contain settings which 

conflict with each other or the platform’s capabilities or that may be configured in such a 

way as to cause a failure to boot. These must be searched for and removed before a 

platform is deployed. 

 

Pre-OS State 

Upon application of power to the managed platform’s host processor complex, boot 

firmware starts to execute on the host processor in what we will call the Pre-OS State. On 

a PC platform this is the state classically represented as BIOS POST, or more currently as 

UEFI firmware execution. In this state, the processor, chipset, memory and platform 

peripherals, including add-in cards, are being initialized and configured to support the 

launch of the Operating System. The code in this state is typically run in a single threaded 

mode and with absolute highest privilege level.  

 

On an x86 platform this early initialization code also is responsible for establishing 

System Management Mode (SMM) and populating SMM specific memory with handlers 

for various system maintenance support routines including server Reliability, 
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Availability, and Serviceability (RAS) and a very wide range of runtime support services 

which operate “behind” the Operating System itself.  

 

The Pre-OS State configuration process may include execution of code introduced onto 

the platform via add-in PCIe card-based peripherals. Such “alien” code, regardless of its 

provenance, is presented to the host processor to be run at the same privilege level as the 

rest of the boot firmware and therefore presents an obvious avenue to bring in rogue 

code. And of course, the origins of the base Pre-OS firmware itself must also be 

questioned. 

 

It is at this point in the Production life-cycle of the platform, namely at reset, where we 

can apply one of the most potentially significant security techniques; establishment of a 

Core Root of Trust. It is here that we have the distinct ability, with the right hardware and 

software, to establish a foundation from which we can not only securely go forward to 

loading the OS but also securely capture detailed data from which we can later assure 

acceptable secure state was achieved. The concept of a Core Root of Trust is based on the 

establishment of the minimal Trusted Compute Base opportunity presented at host 

processor reset.  

 

The idea of a Trust Base is that someplace along the line one must decide to trust 

something about the secure platform. This implies that the platform owner knows enough 

about some part of the platform to be able to trust at least that much of it. As with a 

trusted colleague, for example, one knows enough about that person to be able to 

reasonably say what that person might do in a given predictable situation. Just as with a 

trustable person, one can know that a secure platform is trustable in its Managed Pool 

state because it is locked in their data center, for example. And they may know that their 

data center ensures that the secure platform was not physically accessed by untrusted 

persons. Therefore, that physical platform is trustable at least at the point of the beginning 

of execution of add-on enabling code such as the UEFI firmware. One can be reasonably 

sure that if the hardware itself was not accessed, then there is little chance indeed that the 

logic baked into that secure platform will do anything other than go to the reset vector 

address, fetch code, and begin executing that code according to the hardware’s design. 

This point of trust is the launching point of Core Roots of Trust for authenticating the 

balance of the code yet to come at run time and for launching a scheme known as code 

measuring. This entails the establishment of a Core Root of Trust for Measurement. 

 

The first instance of a Core Root of Trust for Measurement (CRTM) is often known as 

the Static CRTM, or S-CRTM. The term Static denotes the fact that the CRTM is 

anchored in one place, namely at processor reset. If the code making up the S-CRTM is 

adequately trustable itself, it can be employed to authenticate the rest of the UEFI 

firmware before allowing it to execute. The technique used to ensure that the S-CRTM 

code is trustable is essentially to make that code immutable. That means that that code 

came from one place – the OEM in most cases – and there is no currently known way to 

alter that code after the platform leaves the OEM’s hands, short of physical possession 

and alteration of the platform. This, of course, means that the immutable portion of the 

code is locked or burned into a memory device and the host processor’s reset vector 
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points into that device. There is no field update of this immutable code, and there is 

tamper prevention on its storage device or said non-volatile memory is hidden away 

inside some other larger logic device where it cannot be altered without altering a major 

component of the platform. Of course is has to be noted that such measures do not come 

without a cost and potential risk. The work required to develop the immutable code and 

validate it to a point of such high reliability is costly indeed. For example, if the 

immutable code is found to be buggy or somehow compromised once deployed to 

Production, the secure platform must be returned to the OEM to be replaced.  

 

The other S-CRTM usage is one of establishing a starting place from which to measure 

the code that will be executed on the platform. The idea is again that we have a trustable 

place to start doing some process that will span code from potentially many sources, most 

outside of the OEM or platform owner’s control. For example, after the UEFI firmware 

core executes, it starts loading third-party drivers, applications, add-in card drivers, OS-

loaders, Operating Systems, etc. The concept of “measuring” here means that the 

platform literally takes a cryptographic hash of the next piece of code it is scheduled to 

launch. Then subsequent code is also hashed, and so on and so forth. This presents a set 

of fingerprints of the code, or even of platform configuration data, that was run on that 

platform. These measurements must also be kept someplace safe or else they are 

themselves subject to “evidence tampering”. The safe place is another TCG construct 

known as the Trusted Platform Module (TPM) and in TCG such usage is known as 

Trusted Storage. (See TCG specs tbd for details of Trusted Measure, Trusted Store.) 

 

With the measurement data captured in the TPM, one can perform either a “real-time” 

state based check, or one can retroactively analyze the measurement data to determine if 

a certain state was indeed met. For example, taking the latter case, an agent running on 

the secure platform can at some point in the Production boot cycle halt the platform, grab 

the set of measurements from the TPM device on the secure platform, and utilizing a 

trusted service, typically found on a trusted third party controlled database, determine if 

the firmware executed on that secure platform matched the hashes of known good 

firmware.  

 

This implies of course that the trusted third party doing the checking has access to a set of 

Golden Measures that match accepted secure platform measures. The process of checking 

actual measures against golden measure is one of attestation. There may be more than 

one set of golden measures. This is because there are likely more than one set of 

acceptable configurations – given optional BIOS settings, optional boot device selection, 

and so on possible for a given platform. With the determination of a match between 

present and Golden measures , or not, the secure platform agent may be used to inform 

secure platform policy as to whether and how secure platform may continue to boot and 

into what operating domain it may be permitted. So, for example, if our measured 

platform is found to have been configured to employ a USB boot device, policy may 

dictate that the secure platform may not join the corporate network.  

 

Beyond the S-CRTM which reads on firmware construction for  purposes of an S-RTM 

implementation, there are other concerns in platform construction.   As an example, we 
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will discuss a BIOS based upon the Unified Extensible Firmware Interface (UEFI) 

Platform Initialization (PI) specification sets.  The UEFI specifications are purposely 

silent on construction intent and policy.   Instead, these are pure interface specifications 

that admit to conformance testing of the API’s.   As such, some of the intent on usage of 

these standards include which portions are platform supplier (PS) extensible and which 

are platform owner (PO) extensible.    

 

 

Figure 3 UEFI PI Boot Flow 
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Figure 4 UEFI PI Software Layering Diagram 

 

 

 

As you can see from the boot flow above, the SEC, PEI, and DXE all run prior to having 

the UEFI services available.  The UEFI specification describes a set of interfaces to the 

platform, and the UEFI PI DXE phase acts as the UEFI core.  In fact, the DXE core is the 

preferred embodiment of the UEFI interfaces.   

 

What is important to take away from the boot flow is that the left hand side of the flow 

are platform supplier extensible.   The UEFI PI components form the root of trust for 

updates (RTU), the root of trust for measurement (RTM), and the root of trust for 

verification (RTV).   The RTU can be implemented via a DXE capsule update driver, the 

RTM via a DXE TPM driver that publics the EFI_TCG_PROTOCOL, and finally, a set 

of DXE modules that implement the RTV by means of implementing the authenticated 

variables and UEFI 2.3.1c Secure Boot processing.   The codes which implement the 

RTU, RTV, and the RTM must be from the platform supplier (PS) in order to have 

assurance regarding their behavior.   The PS is sometimes known as the Platform 

Manufacturer (PM) and the codes which are from the platform manufacturer are known 
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as running under PM Authority, or PM_AUTH.   

 

As distinct from PM_AUTH, the elements on the right hand side of the boot flow are 

typically under control of the platform owner (PO).   These PO extensible elements 

include UEFI drivers, UEFI applications, and the operating system kernel.    

 

Secure Boot 

Regrettably, “Secure Boot” is a highly overloaded term in the industry. In the context of 

the taxonomy in this paper, we introduce “Secure Boot” as a more generic capability as 

distinct from measured boot.  In measured boot, a record of the code execution is 

provided into the PCR’s but no policy decisions are enacted.  Secure Boot, on the other 

hand, enforces policy prior to the execution of content.  The code that implements the 

Secure Boot logic is known alternatively as a Root of Trust for Verification (RTV) or 

Root of Trust for Enforcement (RTE).   The RTV can be a hardware embodiment that 

vets the provenance of the UEFI PI firmware prior to passing control or it can be 

implemented in UEFI for purposes of providing PO control of UEFI 3
rd

 party 

executables.   The latter usage is described in more detail below. 

 

 

 
Figure 5 Verifiers in Pre-OS Space 
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In the figure above, the platform hardware complex will provide logic to verify that the 

ensuing BIOS storage container meets the policy of the platform supplier.  Once this 

restart time verification occurs, the PS PI code, such as the UEFI PEI phase, is 

responsible for ensuring that the rest of the PS code meets policy.   Today, the hardware 

action is PS and/or hardware-supplier specific, and the ‘middle’ verification is PS 

specification.  Neither of these actions admits to industry standardization today.    

 

Another very current security technique involves the authentication of the very images 

that the UEFI firmware itself will be asked to execute. This capability was introduced in 

UEFI Spec r2.3.1 and requires not only a compliant UEFI firmware but also requires 

drivers signed in a compliant manner by their producer or a trusted third-party (CA). 

Note that this technique does not apply to legacy BIOS because there is no standards-

based way to orchestrate the compatible signing of loadable BIOS objects. For UEFI 

firmware, perhaps the most notable application of this technique, known as Secure Boot, 

is the signing and authentication of the OS Loader itself. This is but one of many possible 

applications of this technique, but is probably the most obvious because it involves the 

signing and authentication of the one UEFI driver responsible for loading the Operating 

System and because of its inherent security is now Required to load some operating 

systems.  

 

The idea behind this application of “secure boot” is that if the UEFI driver for loading the 

OS, which comes from the OS vendor, is not found to be on the platform’s allowed list 

(or conversely is found on the disallowed list) the assumption is that some party has 

attempted to inject a rogue OS loader driver into the boot path and it is assumed, 

therefore, that they intend to launch an OS unknown or unintended by the secure platform 

owner. In other words, there is a strong chance that in such a case someone is trying to do 

something untoward. It should also be noted that this technique of signing OS loaders 

applies only to UEFI Native OS loading and does not apply to loading of legacy 

operating systems. That is because legacy operating system loaders, while possibly 

running “in” UEFI firmware itself, as is the case with a CSM-enabled platform, do not 

employ a UEFI driver, and therefore there is no way to ensure conformance with a set 

signing and authentication scheme.  

 

Beyond the higher profile OS Loader signing, the UEFI image signing scheme can also 

be employed to sign UEFI shell applications, or UEFI drivers of any type including third-

party drivers introduced via add-in cards. This is important because a secure platform 

vendor or owner can now require that add-in card vendors, or even vendors of on-board 

peripheral devices, provide signed UEFI drivers. This step helps ensure that the driver 

introduced onto the secure platform can be authenticated against a known good list, or 

rejected based on a known-bad list. Again, this capability does not apply to legacy BIOS 

“Option ROM drivers” because there is no set standard for signing and authentication in 

legacy BIOS. And again, this capability requires that the producer of the UEFI driver 

which enables the add-in card complies with UEFI specification mandating signing types 

and so on. 
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Features like UEFI Secure Boot on a PC without a lower-level hardware root of trust to 

cryptographically bind the NVRAM (flash) part to the motherboard should be resistant to 

the hack attack, but not a shack attack (a shack attack involves physically placing illicit 

components on a board, typically using off the shelf components e.g. Radio Shack).   A 

likely shack attack could be a ROM swap where someone either de-solders the system 

board ROM or uses a Dediprog ® to reprogram the ROM. The XBOX1 was susceptible 

to this class of attack, for example. 

In general it is unlikely that Commercial off the Shelf (COTS) technology, as described 

in this paper, can be resistant to an adversary with the resources to launch a lab-class 

attack. 

 

Late Launch State 

Moving forward in boot time, we encounter other opportunities to apply platform security 

technologies at the firmware layer. Late Launch is a term that refers to the capability of 

placing a running platform, which has passed the Pre-OS and possibly the OS launch 

state, into a new, secure machine state. In TCG terms, this capability is referred to as D-

RTM.  

D-RTM 

A less frequented Root of Trust for Measurement, perhaps, the D-RTM is a highly silicon 

centric means of establishing a secure launching place for an OS or VMM. This 

technique is enabled in vendor specific ways by at least a couple major platform silicon 

providers as of this writing, varies in its implementation, but always requires specific 

silicon to enable. If said silicon is available on our secure platform, we can affect a D-

RTM at any point in time and repeatedly enter and exit the D-RTM state without a 

platform reset. The most obvious application of this capability is to establish a clean slate, 

if you will, from which to launch a Virtual Machine Manager.  

 

The D-RTM requires that the BIOS be compliant in that it carries certain enabling code 

modules, originating from the silicon vendor and added to the OEM’s BIOS, which is 

typically authenticated on the platform before being executed. This code is generally 

architecture-intimate, similar to micro-code, and is part of the total scheme to create the 

clean slate platform state. Of course, to make this work the platform must also somehow 

be configured to deal properly with DMA, and with IO accesses which could dirty the 

otherwise clean slate. To that end, there will often be associated requirements for other 

virtualization capabilities on your platform, and these must be enabled as directed.   

 

The D-RTM is in effect less about measurement than about creating a pristine operational 

state on the fly, but measurement of the components of the D-RTM scheme and 

measurements of the providers of said components are captured and potentially used to 

unseal platform state information or to provide attestation opportunities as with the C-

RTM described above and by the TCG. 
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Persistent Memory Resident Platform Information Spanning Boot 

As part of informing the OS of platform specific configuration, requirements and specific 

methods to handle certain aspects of the platform, such as power management, the UEFI 

firmware builds tables in system memory and passes a pointer to same to the OS after 

UEFI firmware exits. Since these tables exist in memory passed from UEFI firmware to 

Operating System, they should be examined in a secure platform context as well. 

ACPI 
As part of managing platform power, ACPI information is passed from the platform 

UEFI firmware to the OS via persistent memory structure. Because this memory structure 

persists across the handoff from UEFI firmware to OS, and is unprotected, it must be 

examined as a potential attack surface. One could potentially alter the data in this table 

and conceivably cause abhorrent behavior which could overheat a platform or conversely 

severely limit its processing speed, for example. It is conceivable to augment this 

structure with a hash value or even to place this structure into protected memory. 

However, neither the ACPI specification nor the UEFI specification details requirements 

or means to protect this memory structure. 

SMBIOS 
The SMBIOS table consists of both static and dynamic data which is created by the UEFI 

firmware during execution of power on based in part on dynamic platform configuration. 

This data is also passed to the OS through a memory mapped structure. SMBIOS data is 

not generally considered critical operational data, and is rather used to inform platform 

policy and control. This data is most often consumed by platform management. 

Subversion of this data  may cause misbehavior or worse, mis-configuration or mis-

application of platform management policies. These can, in theory, lead to a DoS 

situation.  

 

Post OS State 

One typically assumes that after the OS shuts down the platform is quiesced, all data is 

gone, the slate is cleaned and we are ready to start all over again with application of 

power and a fresh boot cycle. Not necessarily true. Secrets may persist in memory 

through a reboot cycle, after OS exits, either intentionally or not. 

  

One intentional use of persistent memory across a reset is to pass configuration or update 

information “back” to the UEFI firmware. There may also be other areas of memory that 

contain secrets that could unintentionally persist across a reset cycle. For these reasons, 

care must be taken to ensure that secrets in memory are either fully flushed, sequestered 

into protected memory regions, or are protected by encryption,  

 

Summary 

This chapter used a platform life-cycle view to point out specific security concerns and 

recommend application of various technologies and practices to address them. Many of 

the applied technologies are open standards based, which makes application and 
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interaction viable for many secure platform developers. Some of the technologies 

discussed require specific hardware devices, but these are considered important potential 

additions to a secure platform because of their relationship to a secure Root of Trust 

based in hardware, and therefore they are inherently more resistant to attack via 

introduced malware. 
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Conclusion 

This paper has attempted to take a holistic view of platform security technologies and 

initiatives presently available to most x86 platform developers, whether client or server, 

and discuss their relevance based on a secure platform life-cycle. While this list is not 

exhaustive and there are certainly proprietary methods to achieve facets of platform 

security in practice, we hope to have given a grander view of the security challenges and 

the application of potential solutions in an easy to follow and digest narrative.  

 

It should also be very clear from this paper that the present state of platform security is 

far from perfected and is best thought of as a palette of solutions which must be 

understood and properly applied; and even so, today’s palette leaves opportunities for 

clever attack and exploitation.  
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Glossary 

Glossary Item  Definition 

ACPI Advanced Configuration and Power Interface specification.  

Attestation Attestation refers to a process of confirming a platform state or 

measure. 

BDS  A UEFI firmware phase where in boot devices are selected. 

BIOS The term for x86 boot firmware that predates UEFI compliant 

firmware. 

BMC Baseboard Management Controller; a ‘service processor’ as 

defined by the IPMI specification. Usually found on a managed 

platform such as a server.  

CA Certificate Authority; 

CRTM Core Root of Trust for Measurement; a platform operational 

state which serves as a trusted place to perform security 

operations like measurement.  

CSM Compatibility Source Module; a UEFI adjunct that enables 

legacy BIOS-like capabilities.  

DoS Denial of Service; a specific type of platform attack meant to 

make the platform in some way unable to perform its intended 

tasks. 

DRTM Dynamic Root of Trust for Measurement; a TCG term for a 

RTM that can be launched after a CRTM; is highly platform 

silicon centric. 

DXE A UEFI firmware execution phase that is by design open and 

enables add-on drivers and devices in pre-OS space. 

EOL End of Life; the last life-cycle phase for a platform. 

Golden Measure A Golden Measure is a measurement that is made of a known 

platform configuration and provided as input to an attestation 

scheme, for example. 

Hack Attack A platform attack that involves primarily software techniques 

and typically does not include physical access to the platform. 

Hypervisor See VMM 

IPMI Intelligent Platform Management Interface; an open standard 

defining a server management infrastructure and interfaces.  

IT Information Technology 

IaaS Infrastructure as a Service; managed platform provider. 

ME Management Engine; an embedded management service 

processor typical of Intel x86 platforms.  

Measurement This term refers to the act of capturing a uniquely identifying 

piece of information about a software or firmware component; in 

practice the component is usually hashed and that hash is stored 

securely for later analysis or decision making, 

NIST SP800-147A/B Special Publication detailing a means of performing secure BIOS 
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update on client and server platforms. 

  

NVRAM Non-Volatile Random Access Memory 

ODM Original Device Manufacturer; often refers to a contract 

manufacturer of hardware platforms. 

OEM Original Equipment Manufacturer; the entity who produces the 

hardware platform.  

OSV Operating System Vendor 

PCIe PCI Express; used here largely to define add-in IO devices 

PCR Platform Configuration Register; a TCG term defining registers 

within a TPM used to capture platform measures. 

PEI Early phase of UEFI firmware execution that is closed by design 

and functions to enable critical onboard and firmware resources. 

RTE Root of Trust of Enforcement;  

RTM Root of Trust for Measurement; a TCG term that defines where 

secure “measurement” starts.  

RTR Root of Trust for Reporting; a TCG term that indicates a secure 

device that is used to convey security information such as 

measurements.  

RTS Root of Trust for Storage; a TCG term that indicates a secure 

device that can retain data such as measurements.  

RTU Root of Trust for Update; a term that defines a hardware rooted 

update scheme, for example SMI based firmware update.  

RTV Root of Trust for Verification; a term that defines a rooted 

verification entity.  

SaaS Software as a Service; a platform provided to host user 

applications typically in a Cloud. 

S-CRTM Static CRTM; a CRTM that is tied to a immutable hardware 

event such as reset. 

SEC A UEFI firmware phase that precedes PEI and is the first UEFI 

defined firmware phase. This firmware phase is typically quite 

brief and contains OEM specific code and not extensible at 

runtime. 

Shack Attack A platform attack that utilizes physical access and relatively low-

cost methods based on tools and techniques readily available to 

the hobbyist or enthusiast. 

SMBIOS A standard defining a data structure and interface which details 

many aspects and capabilities of a platform. This table is 

typically created by UEFI firmware and consumed by OS. 

SMM System Management Mode; a processor functional mode that 

executes out of discrete memory segment and is invisible to the 

hosted OS or VMM. SMM is programmed into the  platform by 

the UEFI firmware and operates during platform 

runtime/Production. 

TCG Trusted Computing Group; an open consortium of hardware, 

silicon, software and firmware vendors which seeks to define 
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secure platform initiatives. 

UEFI Unified Extensible Firmware Interface; the open standard 

specification that dictates the interfaces to and services of a 

UEFI firmware implementation. 

VM Virtual Machine; a virtualized operating environment created by 

a VMM. 

VMM Virtual Machine Monitor; a software system that runs either on 

or in place of an OS and creates VMs. See also hypervisor. 

VMMV VMM Vendor 
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