

Batching

3

Full batch gradient descent

So far in this class, we’ve passed the full training dataset into our model
for each training step

Pro:

We get an exact derivative for the training set

Con:

Right now—it’s really slow. Soon, it won’t be computationally feasible

What can we do?

4

Mini-batching

Idea:

Estimate derivative with a sample of training data

Pro:

Much faster to compute

Con:

Don’t get the exact derivative

Side effect:

Can potentially get out of local minima, if loss function has them

5

Stochastic Gradient Descent (SGD)

At an extreme, use a single example to estimate derivative

▪ Mini-batch with a size of 1

Also known as online training

Movement along the error curve is much more sporadic

But also much easier to compute

6

What steps might look like for different batch sizes

Slower, more accurate stepFaster, less accurate step

Batch size1 N

Stochastic Mini-batch Full batch

7

Batching terminology cheat-sheet

Full-batch gradient descent

▪ Use all of training data per step

Mini-batch gradient descent

▪ Use small portion of training data per step

Stochastic gradient descent (SGD)

▪ Use single example per step

▪ Occasionally refers to mini-batch gradient descent

8

Epochs

An epoch refers to one entire pass through the dataset

The number of times a model has seen each training example

9

Shuffling

If we are using our data piecemeal, we must be careful:

▪ Don’t want to oversample

▪ Avoid reusing same mini-batch over and over

Solution: shuffle training data after each epoch

▪ Shuffle, make batches, repeat

10

Splitting data up into batches

Full Batch

Batch 5

Batch 4

Batch 3

Batch 2

Batch 1

Batch 5

Batch 4

Batch 3

Batch 2

Batch 1

11

Splitting data up into batches

Step 1

Batch 5

Batch 4

Batch 3

Batch 2

Batch 1

12

Splitting data up into batches

Step 2

Batch 5

Batch 4

Batch 3

Batch 2

Batch 1

13

Splitting data up into batches

Step 3

Batch 5

Batch 4

Batch 3

Batch 2

Batch 1

14

Splitting data up into batches

Step 4

Batch 5

Batch 4

Batch 3

Batch 2

Batch 1

15

Splitting data up into batches

Step 5

Batch 5

Batch 4

Batch 3

Batch 2

Batch 1

16

First epoch completed

17

Shuffle the Data!

Batch 5

Batch 4

Batch 3

Batch 2

Batch 1

18

Continue training

Step 6

Multi-class classification

20

A vector that usually represents
a single choice from among
many options

One entry is 1, the rest are 0

One-hot vectors

1
0
0

0
1
0

0
0
1

Cat Dog Toaster

21

Multi-class classification

Goal: We want our model to be able to predict from one of many
discreet classes

▪ E.g., Cat, dog, toaster, etc.

Idea: train model to output some sort of predictive vector

▪ Each entry in the vector corresponds to a single class’s score

How?

22

Thought 1: Just use a regular vector

Create an output layer that has the same size as number of classes

▪ Use the 𝑧 values (𝑧=𝑎𝑊+𝑏) for that layer as the score

Problems:

▪ Super high variance in output

▪ Loss function isn’t clean

– The label vector is 1 at the index corresponding to the correct class, 0 elsewhere

– How to relate binary data {0, 1} to continuous values from (−∞,∞)?

23

A better way: Softmax

Converts 𝑧 to a probability vector

▪ Each 𝑧_𝑖 is mapped to {0, 1}

▪ Sum of softmaxes is equal to 1

▪ We call 𝑧 logits

Can compare directly with our labels vector

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧𝑖) =
𝑒𝑧𝑖

σ𝑘=1
𝐾 𝑒𝑧𝑘

24

Loss function: Cross entropy

Taken from information theory

▪ Is high when ො𝑦𝑖 and 𝑦𝑖 are different

▪ Is low when they are similar

𝐶. 𝐸. = −෍

𝑖=1

𝑛

𝑦𝑖log(ො𝑦𝑖)

25

Derivative of cross-entropy with softmax input

Super easy to compute!

𝜕𝐶. 𝐸.

𝜕𝑠𝑜𝑓𝑡𝑚𝑎𝑥
⋅
𝜕𝑠𝑜𝑓𝑡𝑚𝑎𝑥

𝜕𝑧𝑖
= ො𝑦𝑖 − 𝑦𝑖

Backpropagation

27

Backpropagation

Idea: use the chain rule to find derivative of cost function with respect to
each set of weights

Works basically the same as the automatic differentiation example we went
over last week

28

𝑥1

𝑥2

𝑥3
𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

ො𝑦1

ො𝑦2

ො𝑦3

Cost
(J)

𝑎(1)

𝑎(2) 𝑎(3)

𝑎(4)

𝑊(1) 𝑊(2) 𝑊(3)

𝜕𝐽

𝜕𝑊(1)

𝜕𝐽

𝜕𝑊(2)

𝜕𝐽

𝜕𝑊(3)
Want: (Biases included in 𝑊)

29

Equations for the model

Layer 1: inputs, 𝑋

Layer 2: first hidden layer

Layer 3: second hidden layer

Layer 4: output

𝑧(2) = 𝑋𝑊(1) 𝑎(2) = 𝜎(𝑧 2)

𝑧(3) = 𝑎(2)𝑊(2) 𝑎(3) = 𝜎(𝑧 3)

𝑧(4) = 𝑎(3)𝑊(3) ො𝑦 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧 4)

𝐽 = 𝐶. 𝐸. (ො𝑦, 𝑦)

30

Getting partial derivatives

𝑧(2) = 𝑋𝑊(1)

𝑧(3) = 𝑎(2)𝑊(2)

𝑧(4) = 𝑎(3)𝑊(3)

𝑎(2) = 𝜎(𝑧 2)

𝑎(3) = 𝜎(𝑧 3)

ො𝑦 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧 4)

𝐽 = 𝐶. 𝐸. (ො𝑦, 𝑦)

31

Getting partial derivatives

𝑧(2) = 𝑋𝑊(1)

𝑧(3) = 𝑎(2)𝑊(2)

𝜕𝐽

𝜕𝑧(4)
= ො𝑦 − 𝑦

𝑎(2) = 𝜎(𝑧 2)

𝑎(3) = 𝜎(𝑧 3)

𝐽 = 𝐶. 𝐸. (ො𝑦, 𝑦)

32

Getting partial derivatives

𝑧(2) = 𝑋𝑊(1)

𝑧(3) = 𝑎(2)𝑊(2)

𝜕𝐽

𝜕𝑧(4)
= ො𝑦 − 𝑦

𝜕𝑧(4)

𝜕𝑊(3) = 𝑎(3);
𝜕𝑧(4)

𝜕𝑎(3)
= 𝑊(3)

𝑎(2) = 𝜎(𝑧 2)

𝑎(3) = 𝜎(𝑧 3)

33

Getting partial derivatives

𝑧(2) = 𝑋𝑊(1)

𝑧(3) = 𝑎(2)𝑊(2)

𝜕𝐽

𝜕𝑧(4)
= ො𝑦 − 𝑦

𝜕𝑧(4)

𝜕𝑊(3) = 𝑎(3);
𝜕𝑧(4)

𝜕𝑎(3)
= 𝑊(3)

𝜕𝑎(3)

𝜕𝑧(3)
= 𝜎′(𝑧 3)

𝑎(2) = 𝜎(𝑧 2)

34

Getting partial derivatives

𝑧(2) = 𝑋𝑊(1)

𝜕𝐽

𝜕𝑧(4)
= ො𝑦 − 𝑦

𝜕𝑎(3)

𝜕𝑧(3)
= 𝜎′(𝑧 3)

𝜕𝑧(3)

𝜕𝑊(2) = 𝑎(2);
𝜕𝑧(3)

𝜕𝑎(2)
= 𝑊(2)

𝑎(2) = 𝜎(𝑧 2)

𝜕𝑧(4)

𝜕𝑊(3) = 𝑎(3);
𝜕𝑧(4)

𝜕𝑎(3)
= 𝑊(3)

35

Getting partial derivatives

𝑧(2) = 𝑋𝑊(1)

𝜕𝐽

𝜕𝑧(4)
= ො𝑦 − 𝑦

𝜕𝑎(3)

𝜕𝑧(3)
= 𝜎′(𝑧 3)

𝜕𝑧(3)

𝜕𝑊(2) = 𝑎(2);
𝜕𝑧(3)

𝜕𝑎(2)
= 𝑊(2)

𝜕𝑎(2)

𝜕𝑧(2)
= 𝜎′(𝑧 2)

𝜕𝑧(4)

𝜕𝑊(3) = 𝑎(3);
𝜕𝑧(4)

𝜕𝑎(3)
= 𝑊(3)

36

Getting partial derivatives

𝜕𝐽

𝜕𝑧(4)
= ො𝑦 − 𝑦

𝜕𝑎(3)

𝜕𝑧(3)
= 𝜎′(𝑧 3)

𝜕𝑧(3)

𝜕𝑊(2) = 𝑎(2);
𝜕𝑧(3)

𝜕𝑎(2)
= 𝑊(2)

𝜕𝑎(2)

𝜕𝑧(2)
= 𝜎′(𝑧 2)

𝜕𝑧(2)

𝜕𝑊(1)
= 𝑋

𝜕𝑧(4)

𝜕𝑊(3) = 𝑎(3);
𝜕𝑧(4)

𝜕𝑎(3)
= 𝑊(3)

37

Can now use the chain rule!

𝜕𝐽

𝜕𝑧(4)
= ො𝑦 − 𝑦

𝜕𝑎(3)

𝜕𝑧(3)
= 𝜎′(𝑧 3)

𝜕𝑎(2)

𝜕𝑧(2)
= 𝜎′(𝑧 2)

𝜕𝑧(2)

𝜕𝑊(1)
= 𝑋

𝜕𝑧(3)

𝜕𝑊(2) = 𝑎(2);
𝜕𝑧(3)

𝜕𝑎(2)
= 𝑊(2)

𝜕𝑧(4)

𝜕𝑊(3) = 𝑎(3);
𝜕𝑧(4)

𝜕𝑎(3)
= 𝑊(3)

38

Can now use the chain rule!

𝜕𝐽

𝜕𝑊(3) =
𝜕𝐽

𝜕𝑧(4)
⋅

𝜕𝑧(4)

𝜕𝑊(3)

𝜕𝐽

𝜕𝑊(2) =
𝜕𝐽

𝜕𝑧(4)
⋅
𝜕𝑧(4)

𝜕𝑎(3)
⋅
𝜕𝑎 3

𝜕𝑧 3 ⋅
𝜕𝑧 3

𝜕𝑊 2

𝜕𝐽

𝜕𝑊(1) =
𝜕𝐽

𝜕𝑧(4)
⋅
𝜕𝑧(4)

𝜕𝑎(3)
⋅
𝜕𝑎 3

𝜕𝑧 3 ⋅
𝜕𝑧 3

𝜕𝑎 2 ⋅
𝜕𝑎 2

𝜕𝑧 2 ⋅
𝜕𝑧(2)

𝜕𝑊(1)

39

Fill in for specific values

𝜕𝐽

𝜕𝑊(2)
= (ො𝑦 − 𝑦) ⋅ 𝑊 3 ⋅ 𝜎′ 𝑧3 ⋅ 𝑎(2)

𝜕𝐽

𝜕𝑊(1)
= ො𝑦 − 𝑦 ⋅ 𝑊 3 ⋅ 𝜎′ 𝑧3 ⋅ 𝑊 2 ⋅ 𝜎′ 𝑧 2 ⋅ 𝑋

𝜕𝐽

𝜕𝑊(3)
= (ො𝑦 − 𝑦) ⋅ 𝑎(3)

Visual intuition

41

Visually, what we are doing is attributing error to specific weights

𝑎(1)

𝑎(2) 𝑎(3)

𝑎(4)

𝑊(1) 𝑊(2) 𝑊(3)

𝑥1

𝑥2

𝑥3
𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

ො𝑦1

ො𝑦2

ො𝑦3

Cost
(J)

42

First, we pass data into the model to get a prediction

𝑎(1)

𝑎(2) 𝑎(3)

𝑎(4)

𝑊(1) 𝑊(2) 𝑊(3)

𝑥1

𝑥2

𝑥3
𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

ො𝑦1

ො𝑦2

ො𝑦3

Cost
(J)

43

This is known as forward propagation, or forward-prop

𝑎(1)

𝑎(2) 𝑎(3)

𝑎(4)

𝑊(1) 𝑊(2) 𝑊(3)

𝑥1

𝑥2

𝑥3
𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

ො𝑦1

ො𝑦2

ො𝑦3

Cost
(J)

44

This leaves us with the cost function

Cost
(J)

𝑎(1)

𝑎(2) 𝑎(3)

𝑎(4)

𝑊(1) 𝑊(2) 𝑊(3)

45

Use the chain rule, work our way back, apply local derivatives
at each layer

𝑎(1)

𝑎(2) 𝑎(3)

𝑎(4)

𝑊(1) 𝑊(2) 𝑊(3)

Cost
(J)

ො𝑦1

ො𝑦2

ො𝑦3

46

At this point we can take the derivative w.r.t 𝑊(3)

𝑎(1)

𝑎(2) 𝑎(3)

𝑎(4)

𝑊(1) 𝑊(2) 𝑊(3)

Cost
(J)

ො𝑦1

ො𝑦2

ො𝑦3

47

Then w.r.t 𝑎(3) to continue the chain

𝑎(1)

𝑎(2) 𝑎(3)

𝑎(4)

𝑊(1) 𝑊(2) 𝑊(3)

Cost
(J)

ො𝑦1

ො𝑦2

ො𝑦3
𝜎

𝜎

𝜎

𝜎

48

This process continues as we attempt to get the derivative
for each weight

𝑎(1)

𝑎(2) 𝑎(3)

𝑎(4)

𝑊(1) 𝑊(2) 𝑊(3)

Cost
(J)

ො𝑦1

ො𝑦2

ො𝑦3
𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

49

Until we have found all the derivatives we need

𝑎(1)

𝑎(2) 𝑎(3)

𝑎(4)

𝑊(1) 𝑊(2) 𝑊(3)

𝑥1

𝑥2

𝑥3
𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

ො𝑦1

ො𝑦2

ො𝑦3

Cost
(J)

50

The error signal: 𝛿

Looking at these equations, we may notice a pattern:

𝜕𝐽

𝜕𝑊(2)
= (ො𝑦 − 𝑦) ⋅ 𝑊 3 ⋅ 𝜎′ 𝑧3 ⋅ 𝑎(2)

𝜕𝐽

𝜕𝑊(1)
= ො𝑦 − 𝑦 ⋅ 𝑊 3 ⋅ 𝜎′ 𝑧3 ⋅ 𝑊 2 ⋅ 𝜎′ 𝑧 2 ⋅ 𝑋

𝜕𝐽

𝜕𝑊(3)
= (ො𝑦 − 𝑦) ⋅ 𝑎(3)

51

The error signal: 𝛿

Let’s call the error signal to a layer, 𝛿(𝑙), the derivative of the cost function
w.r.t. net inputs 𝑧(𝑙)

We can use the error signal to compute the derivative w.r.t the previous
layer’s weight and error signal

𝛿(4) =
𝜕𝐽

𝜕𝑧(4)
= (ො𝑦 − 𝑦)

𝜕𝐽

𝜕𝑊(𝑙)
= 𝛿(𝑙+1) ⋅ 𝑎(𝑙) 𝛿(𝑙) = 𝛿(𝑙+1) ⋅ 𝑊 𝑙 ⋅ 𝜎′(𝑧 𝑙)

52

𝜕𝐽

𝜕𝑊(𝑙)
= 𝛿(𝑙+1) ⋅ 𝑎(𝑙) 𝛿(𝑙) = 𝛿(𝑙+1) ⋅ 𝑊 𝑙 ⋅ 𝜎′(𝑧 𝑙)

𝛿(4)

𝛿(3)

𝛿(2)

𝜕𝐽

𝜕𝑊(2)
= (ො𝑦 − 𝑦) ⋅ 𝑊 3 ⋅ 𝜎′ 𝑧3 ⋅ 𝑎(2)

𝜕𝐽

𝜕𝑊(1)
= ො𝑦 − 𝑦 ⋅ 𝑊 3 ⋅ 𝜎′ 𝑧3 ⋅ 𝑊 2 ⋅ 𝜎′ 𝑧 2 ⋅ 𝑋

𝜕𝐽

𝜕𝑊(3)
= (ො𝑦 − 𝑦) ⋅ 𝑎(3)

53

Error signal in practices

Allows you to easily code a repeatable pattern when implementing
backpropagation by hand

That said, you probably won’t be thinking about the error signal when you
use TensorFlow

May come up in papers you read or other resources you learn from in
the future

Mental break

55

A potential problem

Take a look at this formula for the gradient w.r.t. 𝑊(1):

We’re going to want a deep network!

• More layers allows more complex representations

Is there something that might get screwy due to the functions we’re using?

𝜕𝐽

𝜕𝑊(1)
= ො𝑦 − 𝑦 ⋅ 𝑊 3 ⋅ 𝜎′ 𝑧3 ⋅ 𝑊 2 ⋅ 𝜎′ 𝑧 2 ⋅ 𝑋

56

Range of 𝜎′ 𝑧 ?

Recall derivative of the sigmoid function:

Range of 𝜎′ 𝑧 = 0, 0.25 . Consequences?

𝜎′ 𝑧 = 𝜎(𝑧) 1 − 𝜎(𝑧)

57

What happens to our gradient, as layers increase?

Assume we have many layers

Gradient gets multiplied by numbers strictly between (0, 0.25] repeatedly

And, the gradient goes to zero! (Ugh.)

𝜕𝐽

𝜕𝑊(1) = ො𝑦 − 𝑦 ⋅ 𝑊 𝐿−1 ⋅ 𝜎′ 𝑧𝐿−2 ⋅ 𝑊 𝐿−2 ⋅ 𝜎′ 𝑧 𝐿−2 ⋅…𝑊 2 ⋅ 𝜎′ 𝑧 2 ⋅ 𝑋

58

What happens if gradient is close to zero?
The model can’t train!

This is called the vanishing
gradient problem

59

Not training is bad

So we can’t make a model too deep right now.

▪ But we want a deep network for better models!

If the sigmoid is the problem, can we change it?

▪ Alternative activation functions

Suite of activation functions

61

Non-linearities for deep learning

These functions are the most commonly used in deep learning

All of them have easy derivatives

62

Sigmoid (logistic)

Value at 𝑧 ≪ 0?

Value at 𝑧 = 0?

Value at 𝑧 ≫ 0?

𝜎 𝑧 =
1

1 + 𝑒−𝑧

≈ 0

= 0.5

≈ 1

63

Sigmoid (logistic)

𝜎 𝑧 =
1

1 + 𝑒−𝑧

64

Hyperbolic tangent (tanh)

Value at 𝑧 ≪ 0?

Value at 𝑧 = 0?

Value at 𝑧 ≫ 0?

𝑡𝑎𝑛ℎ 𝑧 =
sinh(𝑧)

cosh(𝑧)
=
𝑒2𝑥 − 1

𝑒2𝑥 + 1

≈ −1

= 0.

≈ 1

65

Hyperbolic Tangent

𝑡𝑎𝑛ℎ 𝑧 =
sinh(𝑧)

cosh(𝑧)
=
𝑒2𝑥 − 1

𝑒2𝑥 + 1

66

Rectified Linear Unit (ReLU)

Value at 𝑧 ≪ 0?

Value at 𝑧 = 0?

Value at 𝑧 ≫ 0?

𝑅𝑒𝐿𝑈 𝑧 = ቊ
0, 𝑧 < 0
𝑧, 𝑧 ≥ 0

= max 0, 𝑧

= 0

= 0.

= 𝑧

67

Rectified Linear Unit

𝑅𝑒𝐿𝑈 𝑧 = ቊ
0, 𝑧 < 0
𝑧, 𝑧 ≥ 0

68

Leaky ReLU

Value at 𝑧 ≪ 0?

Value at 𝑧 = 0?

Value at 𝑧 ≫ 0?

𝐿𝑅𝑒𝐿𝑈 𝑧 = ቊ
𝛼𝑧, 𝑧 < 0
𝑧, 𝑧 ≥ 0

= max 𝛼𝑧, 𝑧

= 𝛼𝑧

= 0.

= 𝑧

69

Leaky ReLU

𝐿𝑅𝑒𝐿𝑈 𝑧 = ቊ
𝛼𝑧, 𝑧 < 0
𝑧, 𝑧 ≥ 0

Dropout
Srivastava, Hinton, Krizhevsky, Sutskever and Salakhutdinov, 2014

71

Dropout overview

Neural networks can represent extremely complex data

▪ Very large number of parameters allows NNs to memorize a dataset

We want to regularize (smooth) their solution

▪ Prevent single neurons from dominating

▪ Require other neurons to be more flexible

▪ Randomly zero the output of neurons during training

– Other neurons have to adapt

72

Dropout model

73

Dropout layer

Gates

74

Knocking out and rescaling neurons

During training, we randomly drop
each neuron with probability 1 − 𝑝

75

Knocking out and rescaling neurons

During training, we randomly drop
each neuron with probability 1 − 𝑝

76

Knocking out and rescaling neurons

This ensures that the expected value of
the weights stays the same at run time

77

Concept of a “pseudo-ensemble”

78

Model 1

79

Model 2

80

Model 3 etc.

81

Dropout: bottom line

▪ Empirically shown to be useful for neural networks

▪ Relatively easy to manually implement

▪ Automatically included with TensorFlow!

tf.nn.dropout(inputs, keep_prob)

Scales weights for you

▪ Uses keep probability instead of drop probability

▪ 𝑘𝑒𝑒𝑝_𝑝𝑟𝑜𝑏 = 𝑝

Neural Net vs. MNIST dataset

83

MNIST: Our first “real” dataset

MNIST:

▪ Labeled hand-written digits from 0-9

▪ Each digit picture is grayscale

▪ 28x28 pixels

Game plan:

1. Convert 2D matrices of pixels into vectors

2. Pass into our neural network

