
Lesson 7
Hardware



This document contains information on products, services and/or processes in development. All information provided here is subject to change without notice. 
Contact your Intel representative to obtain the latest forecast, schedule, specifications and roadmaps.

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Learn more at 
intel.com, or from the OEM or retailer. No computer system can be absolutely secure. 

Tests document performance of components on a particular test, in specific systems. Differences in hardware, software, or configuration will affect actual 
performance. Consult other sources of information to evaluate performance as you consider your purchase. For more complete information about performance 
and benchmark results, visit http://www.intel.com/performance.

Cost reduction scenarios described are intended as examples of how a given Intel-based product, in the specified circumstances and configurations, may 
affect future costs and provide cost savings. Circumstances will vary. Intel does not guarantee any costs or cost reduction.

Statements in this document that refer to Intel’s plans and expectations for the quarter, the year, and the future, are forward-looking statements that involve a 
number of risks and uncertainties. A detailed discussion of the factors that could affect Intel’s results and plans is included in Intel’s SEC filings, including the 
annual report on Form 10-K.

The products described may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current 
characterized errata are available on request.  

Performance estimates were obtained prior to implementation of recent software patches and firmware updates intended to address exploits referred to as 
"Spectre" and "Meltdown."  Implementation of these updates may make these results inapplicable to your device or system.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

Intel does not control or audit third-party benchmark data or the web sites referenced in this document. You should visit the referenced web site and confirm 
whether referenced data are accurate. 

Intel, the Intel logo, Pentium, Celeron, Atom, Core, Xeon and others are trademarks of Intel Corporation in the U.S. and/or other countries. 
*Other names and brands may be claimed as the property of others. 

© 2018 Intel Corporation. 

Legal notices & disclaimers



Learning Objectives
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▪ Define “datacenter”, “gateway”, and ”edge computing”

▪ Recall the key processor types for AI

▪ Explain how Intel® hardware applies to AI

▪ Compare Central (CPU) and Graphic (GPU) processing units

▪ Describe Field Programmable Gate Arrays (FPGA)

You will be able to:



AI in the Modern Era
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Cutting Edge 
Results in a 

Variety of Fields

Bigger 
datasets

Faster 
Computers

Neural Nets

Faster hardware is one of the key areas driving the modern era of AI.



Experiences

Intel® AI Portfolio
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Platforms

Intel® AI Portfolio

Intel® Deep Learning Studio

Intel® Deep Learning Cloud & Appliance

Intel® Computer Vision SDK

Intel® Movidius™ MDK

Intel® Saffron™ 

6



Frameworks

Intel® AI Portfolio

Mllib BigDL
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Libraries

Intel® AI Portfolio

Intel® Math Kernel Library 
(Intel® MKL, MKL-DNN)

Intel® Data Analytics Acceleration Library
(Intel® DAAL)

Intel® Distribution for Python*
(Performance Optimized)

Intel® nGraph™ Library

8*Other names and brands may be claimed as the property of others.



Hardware

Intel® AI Portfolio
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Edge

Many-to-many hyperscale,
for stream and massive batch data processing

1-to-many,
majority streaming data from devices

1-to-1 devices,
lower power and UX requirements

Ethernet 
& Wireless

Datacenter

Wireless & non-IP wired, 
secure, high throughput, real-time 

gateway

End-to-End Computing for AI
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End-to-End Computing for AI

There are various hardware requirements for different AI tasks. 
• AI tasks can include data collection and fusion, training, and inference. 
• The number of operations for training can be on the order of exaFLOPS, 

making this task more suited for datacenters.
• Inference takes fewer operations than training and can be done on both 

edge devices and at datacenters.
• Certain applications can have constraints on the processor size and power. 

For example, wearable devices and drones. 
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Datacenter

Datacenters are used to store and process data for applications, 
from websites to Internet of Things (IoT) systems.
• Low latency, high bandwidth – needed to access high compute resources.
• Reliability, lack of downtime, high performance.
• AI is the fastest-growing datacenter workload. 
• A ~12X growth in demand by 2020 is expected.
• Training is typically done in a datacenter, 

allowing high processor power and physical size.

Datacenter
13



Gateway

Gateway computers route information from edge 
devices into and out of datacenters.
• High bandwidth – able to handle input from many 

devices and route correctly.
• Lightweight protocols – can’t require extensive CPU 

usage, keeping gateway computer fast.
• Secure protocols – gateway computers are often a 

security point of failure.

14

DatacenterGateway

Sensors

Edge



Edge

Edge computing refers to computing happening as close as possible 
to where the computation is required.
• Sensors read information and compute a result directly on an Internet of 

Things (IoT) device, without sending information to data center.
• Reduces communication between sensors 

and  datacenter.
• Uses resources that are not continuously                                                                       

connected to a network.
• Edge computing often used for inference rather                                                                     

than model training.
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End-to-End Example: Automated Driving

Autonomous vehicles produce ~4 terabytes of data per day.
One car, driving for one hour, requires ~5 exaFLOPS of computational 
power in order to safely keep it on the road.

DARPA Self-Driving
Car Challenge Won in 2005
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End-to-End Example: Automated Driving

Vehicle requires:
• Human-Machine Interface (HMI) – to build trust between driver and 

vehicle and provide advanced virtualization and graphics capabilities
• Scalable, powerful in-vehicle computing
• Sensor processing
• Environment modeling
• Driving functions
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End-to-End Example: Automated Driving

Network requires:
• Vehicle-to-vehicle (V2V) and Vehicle-to-everything (V2X) communication
• Next-generation network connectivity
• Over-the-air-updates
• High-definition maps
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End-to-End Example: Automated Driving

Datacenter requires:
• High-performance data center and cloud
• AI to fleet management to data mining
• Model training
• Greater than real time inference
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Intel® Xeon® ProcessorsIntel® Stratix® 10 FPGA Intel® Nervana™

Datacenter AI

Intel® offers a range of processors to compute in the datacenter. 
Intel® hardware at the datacenter:
• Field-programmable gate array (FPGA): spectrum of datacenter to edge.
• Intel® Xeon® processors: widest variety of AI and other data center workloads
• Intel® Nervana™ Neural Network Processor: custom built processor
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Intel® Xeon® Scalable Processor Family
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Scalable performance for widest variety of AI, datacenter workloads, and DL.
• Can use existing general-purpose Intel® Xeon® processor clusters for DL 

training and inference, classical ML, and big data workloads.
• Popular AI frameworks such as TensorFlow* and MXNet* have been 

optimized for Intel architecture
• BigDL for scale deep learning training on Spark Hadoop*.
• Production-ready robust support for full range of AI deployments.

Intel® Xeon® Scalable Processor Family

23*Other names and brands may be claimed as the property of others.



Intel® Xeon® Scalable Processor Family

Intel® Xeon® processors power the vast majority of general purpose ML 
and inference workloads for businesses today.
• Reduced time-to-train by using more server nodes scaling near linearly 

to hundreds of nodes.
• On November 7, 2017 researchers published record training time 

results for both ResNet-50 and AlexNet* using Intel Xeon scalable 
processors and achieved state-of-the-art accuracy.

• When combined with Intel® Math Kernel Library (Intel® MKL), 100x 
speedup in Deep Neural Net processing.

24*Other names and brands may be claimed as the property of others.



Intel® Xeon® Scalable Processor Family

25*Other names and brands may be claimed as the property of others.



Intel® Nervana™ Neural Network Processor (NNP)
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The Intel® Nervana™ neural network processor (NNP) is a custom-designed 
chip for modern AI.
• New memory management system and chip architecture optimized for 

DL utilization.
• New data format “Flexpoint” for DL.
• Hardware increases potential for parallel computation.
• Intel® in close collaboration with Facebook for development.
• Provides the needed flexibility to support DL primitives while making 

core hardware components as efficient as possible.

Intel® Nervana™ Neural Network Processor (NNP)
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General Purpose Processors Specific Use Processors

Intel Atom® and Intel® 
Core™

Vision Intel® Movidius™ Myriad™ 
VPU

Intel® processor 
graphics

Edge-Specific Processors

Intel® offers a variety of edge computing-focused processors.
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Intel® Atom® and Core™ Processors
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Intel® Atom® and Core™ processors are low power general purpose processors 
for embedded applications.
• Lower power than Intel® Xeon® processors.
• Can handle a variety of workloads including basic DL inference 

and classical ML within a larger application.
• Widely used in Mobile Internet Devices (MIDs): feature-limited tablets.
• Power edge computing in automobiles and other Internet of Things (IoT) 

applications.

Intel® Atom® and Core™ Processors
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Amazon’s DeepLens* video camera uses the Intel® Atom® processor to run 
deep learning models locally for object detection and recognition. This can be 
used for face detection, activity recognition, and artistic style transfer. 

Intel® Atom® and Core™ Processors

32*Other names and brands may be claimed as the property of others.



Intel® Iris Pro™ Graphics
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The Intel® Iris Pro™ graphics chips are integrated graphics processors that 
sit on the same die as the CPU.
• Widely used in laptops that do not have dedicated GPUs (e.g. most 

Apple laptops).
• Architecture makes them well-suited for higher inference throughput, 

that is their most common use in AI.
• Provide performance for media or graphics intensive workloads, 

that often are required for AI.

Intel® Iris Pro™ Graphics
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Intel® Movidius™ Myriad™ X Vision Processing Unit 
(VPU)
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Movidius™, acquired by Intel in 2016, offers the Myriad™ X VPU.
• Features the Neural Compute Engine – a dedicated hardware 

accelerator for deep neural network inference. 
• Form factor makes it easy to deploy on small computing devices, 

such as Raspberry Pi* and use on Internet of Things (IoT) 
applications.

• Comes with Intel's Movidius™ Myriad™ development kit (MDK).

Intel® Movidius™ Myriad™ X Vision Processing Unit 
(VPU)

36*Other names and brands may be claimed as the property of others.



The Myriad™ X VPU powers the Intel® Movidius™ Neural Compute Stick 
(NCS).
• Enables rapid prototyping, validation and deployment of Deep 

Neural Network inference at the edge.
• Allows for AI applications that aren’t reliant on                                                

a connection to the cloud.
• The Intel® Movidius™ Neural Compute SDK allows                                   

developers to deploy real-time CNNs for                                            
inferencing on low-power applications. 

Intel® Movidius™ Vision Processing Unit (VPU)
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Stratix® 10 FPGA
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Intel® Stratix® 10 FPGA



Field Programmable Gate Arrays (FPGAs) are hardware that can be 
reconfigured – programmed in the field.
• FPGAs can become any digital circuit as long as the unit has 

enough logic blocks to implement that circuit.
• Enables the creation of custom hardware for individual solutions 

in an optimal way that other devices cannot efficiently support. 
• High-throughput, low-latency processing of complex algorithms, 

such as neural networks.
• Flexible fabric enables direct connection of various inputs, such 

as cameras, without needing an intermediary.

FPGA: Overview
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FPGAs have exceptional power efficiency.
• Applications like hyper-scale datacenters, where total cost of 

ownership is a key factor.
• Intel® FPGAs have over 8 TB/s of on-die memory bandwidth. 
• Solutions tend to keep the data on the device tightly coupled 

with the next compute.
• Minimizes the need to access external memory, that results in 

running at significantly lower frequencies.
• With a custom setup and when programmed for your application 

FPGAs show up to 80% power reduction when using AlexNet*
(a convolutional neural network)

FPGA: Power Efficiency

41*Other names and brands may be claimed as the property of others.



FPGAs flexible fabric and re-configurability enables future-proofing hardware.
• Users can update system hardware capabilities without requiring a hardware 

refresh, resulting in longer lifespans of deployed products.
• Run current and future neural network topologies on the same hardware.
• FPGAs are flexible to any precision type – optimize accuracy, performance, 

and speed to the exact need. 
• As precisions drop from 32-bit to 8-bit or even ternary/binary networks, an 

FPGA has the flexibility to support those changes instantly.
• Have been used in space, military, and extremely high reliability 

environments for decades.

FPGA: Future-Proofing
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Intel® has shortened the design time for developers by creating a set of API 
layers. Developers can interface with the API layers based on level of expertise. 
• Typical users can start at the SDK or framework level.
• Users who want to build their own software stack can enter at the Software 

API layer. 
• Users who want to build their own software stack can enter at the C++ 

embedded API layer.
• Advanced platform developers who want to add more than machine learning 

to their FPGA can enter in at the OpenCL™ host runtime API level.

Intel® FPGAs
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Project Catapult uses clusters of FPGA chips attached to Intel® Xeon®
processors
• Microsoft has been deploying FPGAs in every Azure* server over the last 

several years.
• This configurable cloud provides more efficient execution that CPUs for 

many scenarios without the inflexibility of fixed-function ASICs at scale.
• Microsoft is already using FPGAs for Bing* search ranking, deep neural 

networks (DNN) evaluation, and software defined networking (SDN) 
acceleration.

FPGAs for AI: Microsoft

44*Other names and brands may be claimed as the property of others.



Microsoft Configurable Cloud
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Project Brainwave: a DL acceleration platform.
• Announced at the 2017 Hot Chips Conference.
• A DNN hardware engine synthesized onto FPGAs.
• High performance, distributed system architecture
• Compiler and runtime for low-friction deployment of trained models
• Leverages Microsoft’s vast FPGA infrastructure
• By attaching FPGAs directly to the datacenter network DNNs can be served 

as hardware microservices.

FPGAs for AI: Microsoft
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Hardware for AI: GPUs
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CPU
DOZENS OF CORES

GPU
THOUSANDS OF CORES



Originally designed to process graphics, GPUs have become a popular DL 
workhorse.
• Feature thousands of small, simple cores specialized for numeric, parallel 

computations.
• Many transistors dedicated to computation. 
• GPUs excel at repeated similar instructions in parallel. 
• Optimized for parallel data throughput computation. 
• Major neural net breakthroughs since 2012 have been powered by GPU 

computations – performance has since increased >5x.
• Once the data is in the GPU memory the bottlenecks are small.
• NVIDIA is highly popular in discrete GPUs

Hardware for AI: GPUs
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CPUs vs GPUs
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While GPUs are specialized processors, CPUs are still the main computation 
engines on most computers.
• CPUs have dozens of cores compared to GPUs that have thousands of less 

powerful cores.
• CPUs have fewer arithmetic logic units (ALUs) and a lower compute density 

than GPUs
• CPUs are lower latency and have larger cache memory compared to GPUs

CPUs vs GPUs
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While GPUs are specialized processors, CPUs are still the main computation 
engines on most computers.
• GPUs are designed for parallel tasks and perform well when a single 

instruction is to be performed over a large amount of data.
• GPUs have additional overhead when copying data from main memory is 

required so CPUs can be better when a large number of memory swaps are 
needed.

• GPUs are not good for tasks that cannot be parallelized or when heavy 
processing on fewer data streams is needed. CPUs excel at serial tasks.

• CPUs are easy to program – popular programming languages compile to 
machine code, to be run on CPU by default.

CPUs vs GPUs
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NVIDIA‘s main business is in dedicated hardware for discrete graphics 
processors.
Several factors have made NVIDIA highly popular in this space. 
• CUDA* framework which lets developers write code in C++, Python*, 

and other popular languages that run optimized operations on the GPU.
• Early incorporation of GPUs with cloud services, such as Amazon Web 

Services*.
• For several years, NVIDIA facilitated ecosystem adoption by optimizing their 

libraries and abstracting the complexities of the GPU through SDKs, tools, 
and libraries. 

NVIDIA GPUs

53*Other names and brands may be claimed as the property of others.





AI runs on both general purpose processors and on specialized hardware.

Hardware for AI: General Purpose vs. Specialized

55

Specialized Hardware

Intel®
Nervana™ NNP

Apple Neural Engine*Google 
TPU*

Intel®
Movidius™

*Other names and brands may be claimed as the property of others.



Google’s TPU* is the first major example of a chip designed for AI.
• Google’s first-gen TPU (2015) was designed specifically for fast inference.
• Unlike a GPU, no capabilities for graphics tasks, such as rasterization or 

texture mapping.
• Second-gen (2017) increased the precision available for computations, 

making this version usable for training as well. 

Google Tensor Processing Unit* (TPU)

56*Other names and brands may be claimed as the property of others.



Apple Neural Engine* system is on a chip designed for fast inference.
• Apple Neural Engine shipped on late 2017 iPhones.
• Separate from main CPU and GPU on iPhone.
• Specifically designed for fast neural net inference, capable of 600 billion 

operations per second.
• Highlighted importance of fast neural net inference to Apple’s ability to 

provide its desired user experience.

Apple Neural Engine*

57*Other names and brands may be claimed as the property of others.



Processor Types
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General Custom

We’ve covered processors that span general purpose use to custom built 
solutions.
• CPUs handle all workloads, serial and parallel.
• GPUs for fast parallel processing for images, graphics, and highly parallel 

workloads.
• Highly flexible and custom built solutions like FPGAs and Intel® NNP™



Learning Objectives Recap
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▪ Define “datacenter”, “gateway”, and ”edge” computing

▪ Recall the key processor types for AI

▪ Explain how Intel® hardware applies to AI

▪ Describe Field Programmable Gate Arrays (FPGA)

▪ Compare Central (CPU) and Graphic (GPU) processing units

In this lesson, we worked to:





Get Access to Hardware

61

▪ Understand the tools & libraries that are available to use via remote access

▪ Sign up & receive access to start work on the Jupyter* notebooks from the 

Artificial Intelligence 501, Machine Learning 501, Deep Learning 501 or 

TensorFlow 501 student kits.

▪ Learn more at https://software.intel.com/en-us/ai-academy/students/kits

Sign up for Intel® AI DevCloud access

*Other names and brands may be claimed as the property of others.



Intel® AI DevCloud Overview
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Intel AI DevCloud™ is a server cluster consisting of Intel® Xeon® scalable 
processors.
• Storage, compute needed for DL.
• Pre-loaded with several Intel® optimized DL packages:
• neon™, Theano*, TensorFlow*, Caffe*, Keras*.
• Intel® Distribution for Python*.

*Other names and brands may be claimed as the property of others.
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https://software.intel.com/en-us/ai-academy/tools/devcloud

*Other names and brands may be claimed as the property of others.





Other Resources: AI Student Kits
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Intel® AI student kits includes courses on machine learning and deep learning.
• All three contain concrete examples of implementing AI techniques.
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2S Intel® Xeon® processor E5-2697A v4 on Apache Spark™ with MKL2017 up to 18x performance increase compared to 2S E5-2697 v2 + F2JBLAS machine learning training 
BASELINE: Intel® Xeon® Processor E5-2697 v2 (12 Cores, 2.7 GHz), 256GB memory, CentOS 6.6*, F2JBLAS: https://github.com/fommil/netlib-java, Relative performance 1.0
Intel® Xeon® processor E5-2697 v2 Apache* Spark* Cluster: 1-Master + 8-Workers, 10Gbit/sec Ethernet fabric, Each system with 2 Processors, Intel® Xeon®  processor E5-2697 v2 (12 Cores, 2.7 GHz), Hyper-Threading Enabled, 256GB RAM per 
System, 1-240GB SSD OS Drive, 12-3TB HDDs Data Drives Per System, CentOS* 6.6, Linux* 2.6.32-642.1.1.el6.x86_64, Intel® Intel® MKL 2017 build U1_20160808 , Cloudera Distribution for Hadoop (CDH) 5.7, Apache* Spark* 1.6.1 standalone, 
OMP_NUM_THREADS=1 set in CDH*, Total Java Heap Size of 200GB for Spark* Master and Workers, Relative performance up to 3.4x
Intel® Xeon® processor E5-2699 v3 Apache* Spark* Cluster: 1-Master + 8-Workers, 10Gbit/sec Ethernet fabric, Each system with 2 Processors, Intel® Xeon®  processor E5-2699 v3 (18 Cores, 2.3 GHz), Hyper-Threading Enabled, 256GB RAM per 
System, 1-480GB SSD OS Drive, 12-4TB HDDs Data Drives Per System, CentOS* 7.0, Linux 3.10.0-229.el7.x86_64, Intel® Intel® MKL 2017 build U1_20160808 , Cloudera Distribution for Hadoop (CDH) 5.7, Apache* Spark* 1.6.1 standalone, 
OMP_NUM_THREADS=1 set in CDH*, Total Java Heap Size of 200GB for Spark* Master and Workers, Relative performance up to 8.8x
Intel® Xeon® processor E5-2697A v4 Apache* Spark* Cluster: 1-Master + 8-Workers, 10Gbit Ethernet/sec fabric, Each system with 2 Processors, Intel® Xeon®  processor E5-2697A v4 (16 Cores, 2.6 GHz), Hyper-Threading Enabled, 256GB RAM 
per System, 1-800GB SSD OS Drive, 10-240GB SSDs Data Drives Per System, CentOS* 6.7, Linux 2.6.32-573.12.1.el6.x86_64, Intel® MKL 2017 build U1_20160808 , Cloudera Distribution for Hadoop (CDH) 5.7, Apache* Spark* 1.6.1 standalone, 
OMP_NUM_THREADS=1 set in CDH*, Total Java Heap Size of 200GB for Spark* Master and Workers, Relative performance up to 18x
Machine learning algorithm used for all configurations : Alternating Least Squares ALS Machine Learning Algorithm https://github.com/databricks/spark-perf
Intel® Xeon Phi™ Processor 7250 GoogleNet V1 Time-To-Train Scaling Efficiency up to 97% on 32 nodes
32 nodes of Intel® Xeon Phi™ processor 7250 (68 Cores, 1.4 GHz, 16GB MCDRAM: flat mode), 96GB DDR4 memory, Red Hat* Enterprise Linux 6.7, export OMP_NUM_THREADS=64 (the remaining 4 cores are used for driving communication) MKL 
2017 Update 1, MPI: 2017.1.132, Endeavor KNL bin1 nodes, export I_MPI_FABRICS=tmi, export I_MPI_TMI_PROVIDER=psm2, Throughput is measured using “train” command. Data pre-partitioned across all nodes in the cluster before training. 
There is no data transferred over the fabric while training. Scaling efficiency computed as: (Single node performance / (N * Performance measured with N nodes))*100, where N = Number of nodes
Intel® optimized Caffe*: Intel internal version of Caffe
GoogLeNetV1: http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/43022.pdf, batch size 1536 
Intel® Xeon Phi ™ processor 7250  up to 400x performance increase with Intel Optimized Frameworks compared to baseline out of box performance
BASELINE: Caffe Out Of the Box, Intel® Xeon Phi™ processor 7250 (68 Cores, 1.4 GHz, 16GB MCDRAM: cache mode), 96GB memory,  Centos 7.2 based on Red Hat* Enterprise Linux 7.2, BVLC-Caffe: https://github.com/BVLC/caffe, with 
OpenBLAS, Relative performance 1.0
NEW: Caffe: Intel® Xeon Phi™ processor 7250 (68 Cores, 1.4 GHz, 16GB MCDRAM: cache mode), 96GB memory,  Centos 7.2 based on Red Hat* Enterprise Linux 7.2, Intel® Caffe: : https://github.com/intel/caffe based on BVLC Caffe as of Jul 16, 
2016, MKL GOLD UPDATE1, Relative performance up to 400x
AlexNet used for both configuration as per https://papers.nips.cc/paper/4824-Large image database-classification-with-deep-convolutional-neural-networks.pdf, Batch Size: 256
Intel® Xeon Phi™ Processor 7250, 32 node cluster with Intel® Omni Path Fabric          up to 97%  GoogleNetV1 Time-To-Train Scaling Efficiency
Caffe: Intel® Xeon Phi™ processor 7250 (68 Cores, 1.4 GHz, 16GB MCDRAM: flat mode), 96GB DDR4 memory, Red Hat* Enterprise Linux 6.7, Intel® Caffe: https://github.com/intel/caffe, not publically available yet
export OMP_NUM_THREADS=64 (the remaining 4 cores are used for driving communication)
MKL 2017 Update 1, MPI: 2017.1.132, Endeavor KNL bin1 nodes, export I_MPI_FABRICS=tmi, export I_MPI_TMI_PROVIDER=psm2, Throughput is measured using “train” command. Split the images across nodes and copied locally on each 
node at the beginning of training. No IO happens over fabric while training.
GoogLeNetV1: http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/43022.pdf, batch size 1536 
Intel® Xeon Phi ™ processor Knights Mill up to 4x estimated performance improvement over Intel® Xeon Phi™ processor 7290
BASELINE: Intel® Xeon Phi™ Processor 7290 (16GB, 1.50 GHz, 72 core) with 192 GB Total Memory on Red Hat Enterprise Linux* 6.7 kernel 2.6.32-573 using MKL 11.3 Update 4, Relative performance 1.0
NEW: Intel® Xeon phi™ processor family – Knights Mill, Relative performance up to 4x
Intel® Arria 10 – 1150 FPGA energy efficiency on Caffe/AlexNet up to 25 img/s/w with FP16 at 297MHz
Vanilla AlexNet Classification Implementation as specified by http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf, Training Parameters taken from Caffe open-source Framework are 224x224x3 Input, 1000x1 Output, FP16 with Shared Block-
Exponents, All compute layers (incl. Fully Connected) done on the FPGA except for Softmax, Arria 10-1150 FPGA, -1 Speed Grade on Altera PCIe DevKit with x72 DDR4 @ 1333 MHz, Power measured through on-board power monitor (FPGA 
POWER ONLY), ACDS 16.1 Internal Builds + OpenCL SDK 16.1 Internal Build, Compute machine is an HP Z620 Workstation, Xeon E5-1660 at 3.3 GHz with 32GB RAM. The Xeon is not used for compute.
Knights Mill performance : Results have been estimated or simulated using internal Intel analysis or architecture simulation or modeling, and provided to you for informational purposes. Any differences in your system hardware, software or configuration may affect your actual performance. 
Optimization Notice: Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the 
availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel 
microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice. Notice Revision #20110804
Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.  Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions.  Any change to any of 
those factors may cause the results to vary.  You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete information visit:  
http://www.intel.com/performance Source: Intel measured everything except Knights Mill which is estimated as of November 2016

Configuration details (cont’d)

*Other names and brands may be claimed as the property of others.
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• Optimization Notice: Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, 
and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent 
optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User 
and Reference Guides for more information regarding the specific instruction sets covered by this notice.  Notice Revision #20110804.

• Results have been estimated or simulated using internal Intel analysis or architecture simulation or modeling, and provided to you for informational purposes. Any differences in your system hardware, software or 
configuration may affect your actual performance.

• Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. 
• Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any 
• change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your 
• contemplated purchases, including the performance of that product when combined with other products. For more complete information visit 
• http://www.intel.com/performance/datacenter. Tested by Intel as of 14 June 2016. Configurations: 
1. Faster and more scalable than GPU claim based on Intel analysis and testing

– Up to 2.3x faster training per system claim based on AlexNet* topology workload (batch size = 1024) using a large image database running 4-nodes Intel Xeon Phi processor 7250 (16 GB MCDRAM, 1.4 
GHz, 68 Cores) in Intel® Server System LADMP2312KXXX41, 96GB DDR4-2400 MHz, quad cluster mode, MCDRAM flat memory mode, Red Hat Enterprise Linux* 6.7 (Santiago), 1.0 TB SATA drive 
WD1003FZEX-00MK2A0 System Disk, running Intel® Optimized DNN Framework (internal development version) training 1.33 million images in 10.5 hours compared to 1-node host with four NVIDIA 
“Maxwell” GPUs training 1.33 million images in 25 hours (source: http://www.slideshare.net/NVIDIA/gtc-2016-opening-keynote slide 32). 

– Up to 38% better scaling efficiency at 32-nodes claim based on GoogLeNet deep learning image classification training topology using a large image database comparing one node Intel Xeon Phi processor
7250 (16 GB MCDRAM, 1.4 GHz, 68 Cores) in Intel® Server System LADMP2312KXXX41, DDR4 96GB DDR4-2400 MHz, quad cluster mode, MCDRAM flat memory mode, Red Hat* Enterprise Linux 6.7, 
Intel® Optimized DNN Framework with 87% efficiency to unknown hosts running 32 each NVIDIA Tesla* K20 GPUs with a 62% efficiency (Source: http://arxiv.org/pdf/1511.00175v2.pdf showing FireCaffe* 
with 32 NVIDIA Tesla* K20s (Titan Supercomputer*) running GoogLeNet* at 20x speedup over Caffe* with 1 K20). 

3. Up to 6 SP TFLOPS based on the Intel Xeon Phi processor peak theoretical single-precision performance is preliminary and based on current expectations of cores, clock frequency and floating point operations per 
cycle.  FLOPS = cores x clock frequency x floating-point operations per second per cycle 

4. Up to 3x faster single-threaded performance claim based on Intel estimates of Intel Xeon Phi processor 7290 vs. coprocessor 7120 running XYZ workload. 
5. Up to 2.3x faster training per system claim based on AlexNet* topology workload (batch size = 1024) using a large image database running 4-nodes Intel Xeon Phi processor 7250 (16 GB MCDRAM, 1.4 GHz, 68 

Cores) in Intel® Server System LADMP2312KXXX41, 96GB DDR4-2400 MHz, quad cluster mode, MCDRAM flat memory mode, Red Hat Enterprise Linux* 6.7 (Santiago), 1.0 TB SATA drive WD1003FZEX-00MK2A0 
System Disk, running Intel® Optimized DNN Framework, Intel® Optimized Caffe (internal development version) training 1.33 billion images in 10.5 hours compared to 1-node host with four NVIDIA “Maxwell” GPUs 
training 1.33 billion images in 25 hours (source: http://www.slideshare.net/NVIDIA/gtc-2016-opening-keynote slide 32). 

6. Up to 38% better scaling efficiency at 32-nodes claim based on GoogLeNet deep learning image classification training topology using a large image database comparing one node Intel Xeon Phi processor 7250 (16 GB 
MCDRAM, 1.4 GHz, 68 Cores) in Intel® Server System LADMP2312KXXX41, DDR4 96GB DDR4-2400 MHz, quad cluster mode, MCDRAM flat memory mode, Red Hat* Enterprise Linux 6.7, Intel® Optimized DNN 
Framework with 87% efficiency to unknown hosts running 32 each NVIDIA Tesla* K20 GPUs with a 62% efficiency (Source: http://arxiv.org/pdf/1511.00175v2.pdf showing FireCaffe* with 32 NVIDIA Tesla* K20s (Titan 
Supercomputer*) running GoogLeNet* at 20x speedup over Caffe* with 1 K20).

7. Up to 50x faster training on 128-node as compared to single-node based on AlexNet* topology workload (batch size = 1024) training time using a large image database running one node Intel Xeon Phi processor 7250 
(16 GB MCDRAM, 1.4 GHz, 68 Cores) in Intel® Server System LADMP2312KXXX41, 96GB DDR4-2400 MHz, quad cluster mode, MCDRAM flat memory mode, Red Hat Enterprise Linux* 6.7 (Santiago), 1.0 TB SATA 
drive WD1003FZEX-00MK2A0 System Disk, running Intel® Optimized DNN Framework, training in 39.17 hours compared to 128-node identically configured with  Intel® Omni-Path Host Fabric Interface Adapter 100 
Series 1 Port PCIe x16 connectors training in 0.75 hours.  Contact your Intel representative for more information on how to obtain the binary. For information on workload, see https://papers.nips.cc/paper/4824-Large 
image database-classification-with-deep-convolutional-neural-networks.pdf. 

8. Up to 30x software optimization improvement claim based on customer CNN training workload running 2S Intel® Xeon® processor E5-2680 v3 running Berkeley Vision and Learning Center* (BVLC) Caffe + OpenBlas* 
library and then run tuned on the Intel® Optimized Caffe (internal development version) + Intel® Math Kernel Library (Intel® MKL).

Configuration details (cont’d)

*Other names and brands may be claimed as the property of others.
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Platform: 2S Intel® Xeon® Platinum 8180 processor @ 2.50GHz (28 cores), HT disabled, turbo disabled, scaling governor set to “performance” via intel_pstate 
driver, 384GB DDR4-2666 ECC RAM. CentOS Linux* release 7.3.1611 (Core), Linux kernel 3.10.0-514.10.2.el7.x86_64. SSD: Intel® SSD DC S3700 Series (800GB, 
2.5in SATA 6Gb/s, 25nm, MLC).

Performance measured with: Environment variables: KMP_AFFINITY='granularity=fine, compact‘, OMP_NUM_THREADS=56, CPU Freq set with cpupower
frequency-set -d 2.5G -u 3.8G -g performance

Deep Learning Frameworks:

- Caffe*: (http://github.com/intel/caffe/), revision f96b759f71b2281835f690af267158b82b150b5c. Inference measured with “caffe time --forward_only” 
command, training measured with “caffe time” command. For “ConvNet” topologies, dummy dataset was used. For other topologies, data was stored on local 
storage and cached in memory before training. Topology specs from https://github.com/intel/caffe/tree/master/models/intel_optimized_models (GoogLeNet, 
AlexNet, and ResNet-50), https://github.com/intel/caffe/tree/master/models/default_vgg_19 (VGG-19), and https://github.com/soumith/convnet-
benchmarks/tree/master/caffe/imagenet_winners (ConvNet benchmarks; files were updated to use newer Caffe prototxt format but are functionally equivalent). 
Intel C++ compiler ver. 17.0.2 20170213, Intel MKL small libraries version 2018.0.20170425. Caffe run with “numactl -l“.

- TensorFlow*: (https://github.com/tensorflow/tensorflow), commit id 207203253b6f8ea5e938a512798429f91d5b4e7e. Performance numbers were obtained 
for three convnet benchmarks: alexnet, googlenetv1, vgg(https://github.com/soumith/convnet-benchmarks/tree/master/tensorflow) using dummy data. GCC 
4.8.5, Intel MKL small libraries version 2018.0.20170425, interop parallelism threads set to 1 for alexnet, vgg benchmarks, 2 for googlenet benchmarks, intra op 
parallelism threads set to 56, data format used is NCHW, KMP_BLOCKTIME set to 1 for googlenet and vgg benchmarks, 30 for the alexnet benchmark. Inference 
measured with --caffe time -forward_only -engine MKL2017option, training measured with --forward_backward_only option. 

- MxNet: (https://github.com/dmlc/mxnet/), revision 5efd91a71f36fea483e882b0358c8d46b5a7aa20. Dummy data was used. Inference was measured with 
“benchmark_score.py”, training was measured with a modified version of benchmark_score.py which also runs backward propagation. Topology specs from 
https://github.com/dmlc/mxnet/tree/master/example/image-classification/symbols. GCC 4.8.5, Intel MKL small libraries version 2018.0.20170425.

- Neon: ZP/MKL_CHWN branch commit id:52bd02acb947a2adabb8a227166a7da5d9123b6d. Dummy data was used. The main.py script was used for 
benchmarking , in mkl mode. ICC version used : 17.0.3 20170404, Intel MKL small libraries version 2018.0.20170425. 

Configuration details (cont’d)

*Other names and brands may be claimed as the property of others.
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Platform: 2S Intel® Xeon® processor E5-2697 v2 @ 2.70GHz (12 cores), HT enabled, turbo enabled, scaling governor set to “performance” via intel_pstate driver, 
256GB DDR3-1600 ECC RAM. CentOS Linux* release 7.3.1611 (Core), Linux kernel 3.10.0-514.21.1.el7.x86_64. SSD: Intel® SSD 520 Series 240GB, 2.5in SATA 
6Gb/s, 25nm, MLC.

Performance measured with: Environment variables: KMP_AFFINITY='granularity=fine, compact,1,0‘, OMP_NUM_THREADS=24, CPU Freq set with cpupower
frequency-set -d 2.7G -u 3.5G -g performance

Deep Learning Frameworks:

- Caffe*: (http://github.com/intel/caffe/), revision b0ef3236528a2c7d2988f249d347d5fdae831236. Inference measured with “caffe time --forward_only” 
command, training measured with “caffe time” command. For “ConvNet” topologies, dummy dataset was used. For other topologies, data was stored on local 
storage and cached in memory before training. Topology specs from https://github.com/intel/caffe/tree/master/models/intel_optimized_models (GoogLeNet, 
AlexNet, and ResNet-50), https://github.com/intel/caffe/tree/master/models/default_vgg_19 (VGG-19), and https://github.com/soumith/convnet-
benchmarks/tree/master/caffe/imagenet_winners (ConvNet benchmarks; files were updated to use newer Caffe prototxt format but are functionally equivalent). 
GCC 4.8.5, Intel MKL small libraries version 2017.0.2.20170110.

Configuration details (cont’d)
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Intel® Caffe*: Intel internal version of Caffe

Intel® Arria 10 – 1150 FPGA energy efficiency on Caffe/AlexNet up to 25 img/s/w with FP16 at 297MHz
Vanilla AlexNet Classification Implementation as specified by http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf, Training Parameters taken from Caffe open-source 
Framework are 224x224x3 Input, 1000x1 Output, FP16 with Shared Block-Exponents, All compute layers (incl. Fully Connected) done on the FPGA except for Softmax, Arria 
10-1150 FPGA, -1 Speed Grade on Altera PCIe DevKit with x72 DDR4 @ 1333 MHz, Power measured through on-board power monitor 
(FPGA POWER ONLY), ACDS 16.1 Internal Builds + OpenCL SDK 16.1 Internal Build, Compute machine is an HP Z620 Workstation, Intel® Xeon E5-1660 processor at 3.3 GHz 
with 32GB RAM. The Intel Xeon processor is not used for compute.

Projected data comes from verified deterministic model of DLA IP implementation on FPGA

Intel, the Intel logo, Altera, ARRIA, CYCLONE, ENPIRION, MAX, NIOS, QUARTUS and STRATIX words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. 
and/or other countries.

Configuration details (cont’d)
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INFERENCE using FP32 Batch Size Caffe GoogleNet v1 256  AlexNet 256. 

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.  Performance tests, such as SYSmark and MobileMark, are measured using specific computer 
systems, components, software, operations and functions.  Any change to any of those factors may cause the results to vary.  You should consult other information and performance tests to assist you in fully evaluating your 
contemplated purchases, including the performance of that product when combined with other products. For more complete information visit http://www.intel.com/performance  Source: Intel measured as of June 2017 
Optimization Notice: Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and 
SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent 
optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and 
Reference Guides for more information regarding the specific instruction sets covered by this notice. 

Configurations 40, 41: 

Platform: 2S Intel® Xeon® Platinum 8180 CPU @ 2.50GHz (28 cores), HT disabled, turbo disabled, scaling governor set to “performance” via intel_pstate driver, 384GB DDR4-2666 ECC RAM. CentOS Linux release 
7.3.1611 (Core), Linux kernel 3.10.0-514.10.2.el7.x86_64. SSD: Intel® SSD DC S3700 Series (800GB, 2.5in SATA 6Gb/s, 25nm, MLC). Performance measured with: Environment variables: 
KMP_AFFINITY='granularity=fine, compact‘, OMP_NUM_THREADS=56, CPU Freq set with cpupower frequency-set -d 2.5G -u 3.8G -g performance.  Deep Learning Frameworks: Caffe*: (http://github.com/intel/caffe/), 
revision f96b759f71b2281835f690af267158b82b150b5c. Inference measured with “caffe time --forward_only” command, training measured with “caffe time” command. For “ConvNet” topologies, dummy dataset was used. 
For other topologies, data was stored on local storage and cached in memory before training. Topology specs from https://github.com/intel/caffe/tree/master/models/intel_optimized_models (GoogLeNet, AlexNet, and 
ResNet-50), https://github.com/intel/caffe/tree/master/models/default_vgg_19 (VGG-19), and https://github.com/soumith/convnet-benchmarks/tree/master/caffe/imagenet_winners (ConvNet benchmarks; files were updated to 
use newer Caffe prototxt format but are functionally equivalent). Intel C++ compiler ver. 17.0.2 20170213, Intel MKL small libraries version 2018.0.20170425. Caffe run with “numactl -l“.

Platform: 2S Intel® Xeon® CPU E5-2699 v3 @ 2.30GHz (18 cores), HT enabled, turbo disabled, scaling governor set to “performance” via intel_pstate driver, 256GB DDR4-2133 ECC RAM. CentOS Linux release 7.3.1611 
(Core), Linux kernel 3.10.0-514.el7.x86_64. OS drive: Seagate* Enterprise ST2000NX0253 2 TB 2.5" Internal Hard Drive. Performance measured with: Environment variables: KMP_AFFINITY='granularity=fine, 
compact,1,0‘, OMP_NUM_THREADS=36, CPU Freq set with cpupower frequency-set -d 2.3G -u 2.3G -g performance. Deep Learning Frameworks: Intel Caffe: (http://github.com/intel/caffe/), revision 
b0ef3236528a2c7d2988f249d347d5fdae831236. Inference measured with “caffe time --forward_only” command, training measured with “caffe time” command. For “ConvNet” topologies, dummy dataset was used. For other 
topologies, data was stored on local storage and cached in memory before training. Topology specs from https://github.com/intel/caffe/tree/master/models/intel_optimized_models (GoogLeNet, AlexNet, and ResNet-50), 
https://github.com/intel/caffe/tree/master/models/default_vgg_19 (VGG-19), and https://github.com/soumith/convnet-benchmarks/tree/master/caffe/imagenet_winners (ConvNet benchmarks; files were updated to use newer 
Caffe prototxt format but are functionally equivalent). GCC 4.8.5, MKLML version 2017.0.2.20170110. BVLC-Caffe: https://github.com/BVLC/caffe, Inference & Training measured with “caffe time” command.  For “ConvNet” 
topologies, dummy dataset was used. For other topologies, data was st ored on local storage and cached in memory before training  BVLC Caffe (http://github.com/BVLC/caffe), revision 
91b09280f5233cafc62954c98ce8bc4c204e7475 (commit date 5/14/2017). BLAS: atlas ver. 3.10.1.

Configuration details (cont’d)
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Intel® and SURFsara* Research Collaboration 
MareNostrum4/BSC* Configuration Details
*MareNostrum4/Barcelona Supercomputing Center: https://www.bsc.es/

Compute Nodes: 2 sockets Intel® Xeon® Platinum 8160 CPU with 24 cores each @ 2.10GHz for a total of 48 cores per node, 2 Threads per core, L1d 32K; L1i cache 32K; L2 cache 
1024K; L3 cache 33792K, 96 GB of DDR4, Intel® Omni-Path Host Fabric Interface, dual-rail. Software: Intel® MPI Library 2017 Update 4Intel® MPI Library 2019 Technical Preview OFI 
1.5.0PSM2 w/ Multi-EP, 10 Gbit Ethernet, 200 GB local SSD, Red Hat* Enterprise Linux* 6.7. 

Intel optimized Caffe*: Intel® version of Caffe;  http://github.com/intel/caffe/, revision 8012927bf2bf70231cbc7ff55de0b1bc11de4a69.
Intel® MKL version: mklml_lnx_2018.0.20170425; Intel® MLSL version: l_mlsl_2017.1.016

Model: Topology specs from https://github.com/intel/caffe/tree/master/models/intel_optimized_models (ResNet-50) and modified for wide-RedNet-50. Batch size as stated in the 
performance chart

Time-To-Train: measured using “train” command. Data copied to memory on all nodes in the cluster before training. No input image data transferred over the fabric while training;

Performance measured with:
export OMP_NUM_THREADS=44 (the remaining 4 cores are used for driving communication), export I_MPI_FABRICS=tmi, export I_MPI_TMI_PROVIDER=psm2

OMP_NUM_THREADS=44 KMP_AFFINITY="proclist=[0-87],granularity=thread,explicit" KMP_HW_SUBSET=1t MLSL_NUM_SERVERS=4 mpiexec.hydra -PSM2 -l -n 
$SLURM_JOB_NUM_NODES -ppn 1 -f hosts2 -genv OMP_NUM_THREADS 44 -env KMP_AFFINITY "proclist=[0-87],granularity=thread,explicit" -env KMP_HW_SUBSET 1t -genv
I_MPI_FABRICS tmi -genv I_MPI_HYDRA_BRANCH_COUNT $SLURM_JOB_NUM_NODES -genv I_MPI_HYDRA_PMI_CONNECT alltoall sh -c 'cat 
/ilsvrc12_train_lmdb_striped_64/data.mdb > /dev/null ; cat /ilsvrc12_val_lmdb_striped_64/data.mdb > /dev/null ; ulimit -u 8192 ; ulimit -a ; numactl -H ; /caffe/build/tools/caffe train 
--solver=/caffe/models/intel_optimized_models/multinode/resnet_50_256_nodes_8k_batch/solver_poly_quick_large.prototxt -engine "MKL2017" 

*SURFsara B.V. is the Dutch national high-performance computing and e-Science support center. Amsterdam Science Park, Amsterdam, The Netherlands.

SURFsara blog: https://blog.surf.nl/en/imagenet-1k-training-on-intel-xeon-phi-in-less-than-40-minutes/ ; Researchers: Valeriu Codreanu, Ph.D. (PI).; Damian Podareanu, MSc; SURFsara* &  Vikram Saletore, Ph.D. (co-PI): Intel Corp.
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