

2

Motivation for Neural Nets

 Use biology as inspiration for
mathematical model

 Get signals from previous neurons

 Generate signals (or not)
according to inputs

 Pass signals on to next neurons

 By layering many neurons, can
create complex model

 Can think of it as a complicated computation engine

 We will ”train it” using our training data

 Then (hopefully) it will give good answers on new data

3

Neural Net Structure

Input
(Feature Vector)

Output
(Label)

4

Basic Neuron Visualization

activation
function

5

Basic Neuron Visualization

activation
function

Data from
previous layer

6

Basic Neuron Visualization

activation
function

Some form of computation
transforms the inputs

7

Basic Neuron Visualization

activation
function

The neuron outputs the
transformed data

8

Basic Neuron Visualization

activation
function

x1

x2

x3

w2

9

Basic Neuron Visualization

activation
function

x1

x2

x3

w2

1

10

Basic Neuron Visualization

activation
function

x1

x2

x3

w2

1

f(z)

z = x1w1+ x2w2+ x3w3+b

z = “net input”

b = “bias term”

f = activation function

a = output to next layer

11

In Vector Notation

𝑧 = 𝑏 +

𝑖=1

𝑚

𝑥𝑖𝑤𝑖

𝑧 = 𝑏 + 𝑥𝑇𝑤

𝑎 = 𝑓(𝑧)

When we choose:

Then a neuron is simply a ”unit” of logistic regression!

weights coefficients inputs variables

bias term constant term

12

Relation to Logistic Regression

𝑓 𝑧 =
1

1+𝑒−𝑧

𝑧 = 𝑏 +

𝑖=1

𝑚

𝑥𝑖𝑤𝑖 = 𝑥1𝑤1 + 𝑥2𝑤2 + ⋯+ 𝑥𝑚𝑤𝑚 + 𝑏

13

Relation to Logistic Regression

This is called the “sigmoid” function: 𝜎 𝑧 =
1

1 + 𝑒−𝑧

14

Nice Property of Sigmoid Function

𝜎 𝑧 =
1

1 + 𝑒−𝑧

𝜎′ 𝑧 =
0 − (−𝑒−𝑧)

1 + 𝑒−𝑧 2
=

𝑒−𝑧

1 + 𝑒−𝑧 2

=
1 + 𝑒−𝑧 − 1

1 + 𝑒−𝑧 2 =
1 + 𝑒−𝑧

1 + 𝑒−𝑧 2
−

1

1 + 𝑒−𝑧 2

=
1

1 + 𝑒−𝑧
−

1

1 + 𝑒−𝑧 2
=

1

1 + 𝑒−𝑧
1 −

1

1 + 𝑒−𝑧

𝜎′ 𝑧 = 𝜎(𝑧)(1 − 𝜎(𝑧))

𝑑

𝑑𝑥
⋅
𝑓(𝑥)

𝑔(𝑥)
=

𝑓′ 𝑥 𝑔 𝑥 − 𝑓 𝑥 𝑔′(𝑥)

𝑔 𝑥 2

Quotient rule

This will be helpful!

15

Example Neuron Computation

(sigmoid)
activation

function

x1

x2

x3

w2

1

f(z)

z = x1w1+ x2w2+ x3w3+b

16

Example Neuron Computation

(sigmoid)
activation

function

.9

.2

.3

3

1

f(z)

z = x1w1+ x2w2+ x3w3+b

17

Example Neuron Computation

(sigmoid)
activation

function

.9

.2

.3

3

1

f(z)

z = .9(2)+ .2(3)+ .3(-1)+.5 = 2.6

18

Example Neuron Computation

(sigmoid)
activation

function

.9

.2

.3

3

1

z = .9(2)+ .2(3)+ .3(-1)+.5 = 2.6

f(z)=f(3.5)=1/(1+exp(-2.6))
= .93

19

Example Neuron Computation

(sigmoid)
activation

function

.9

.2

.3

3

1

z = .9(2)+ .2(3)+ .3(-1)+.5 = 2.6

f(z)=f(3.5)=1/(1+exp(-2.6))
= .93

Neuron would output
the value .93

20

Why Neural Nets?

 Why not just use a single neuron?
Why do we need a larger network?

 A single neuron (like logistic
regression) only permits a linear
decision boundary.

 Most real-world problems are
considerably more complicated!

21

Feedforward Neural Network

𝑥1

𝑥2

𝑥3

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

 𝑦1

 𝑦2

 𝑦3

22

Weights

𝑥1

𝑥2

𝑥3

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

 𝑦1

 𝑦2

 𝑦3

23

Input Layer

𝑥1

𝑥2

𝑥3

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

 𝑦1

 𝑦2

 𝑦3

24

Hidden Layers

𝑥1

𝑥2

𝑥3

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

 𝑦1

 𝑦2

 𝑦3

25

Output Layer

𝑥1

𝑥2

𝑥3

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

 𝑦1

 𝑦2

 𝑦3

26

Weights (represented by matrices)

𝑥1

𝑥2

𝑥3

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

 𝑦1

 𝑦2

 𝑦3

𝑊(1) 𝑊(2) 𝑊(3)

27

Net Input (sum of weighted inputs, before activation function)

𝑥1

𝑥2

𝑥3

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

 𝑦1

 𝑦2

 𝑦3

𝑧(2) 𝑧(3) 𝑧(4)

28

Activations (output of neurons to next layer)

𝑥1

𝑥2

𝑥3

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

 𝑦1

 𝑦2

 𝑦3

𝑎(1)
𝑎(2) 𝑎(3)

𝑎(4)

29

Matrix representation of computation

𝑥1

𝑥2

𝑥3

𝜎

𝜎

𝜎

𝜎

𝑧(2) = 𝑥𝑊(1)

𝑎(2) = 𝜎(𝑧 2)

𝑥 = 𝑥1, 𝑥2, 𝑥3

(𝑥 = 𝑎(1))

𝑊(1) is a
3x4 matrix

𝑧(2) is a
4-vector

𝑎(2) is a
4-vector

𝑎(2)𝑧(2)

𝑊(1)

30

Continuing the Computation

For a single training instance (data point)

Input: vector x (a row vector of length 3)

Output: vector 𝑦 (a row vector of length 3)

𝑧(2) = 𝑥𝑊(1) 𝑎(2) = 𝜎(𝑧 2)

𝑧(3) = 𝑎(2)𝑊(2) 𝑎(3) = 𝜎(𝑧 3)

𝑧(4) = 𝑎(3)𝑊(3) 𝑦 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧 4)

31

Multiple data points

In practice, we do these computation for many data points at the same time,
by “stacking” the rows into a matrix. But the equations look the same!

Input: matrix x (an nx3 matrix) (each row a single instance)

Output: vector 𝑦 (an nx3 matrix) (each row a single prediction)

𝑧(2) = 𝑥𝑊(1) 𝑎(2) = 𝜎(𝑧 2)

𝑧(3) = 𝑎(2)𝑊(2) 𝑎(3) = 𝜎(𝑧 3)

𝑧(4) = 𝑎(3)𝑊(3) 𝑦 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧 4)

32

Now we know how feedforward NNs do Computations.

Next, we will learn how to adjust the weights to learn from data.

