

2

Data Augmentation

▪ One practical obstacle to building image classifiers is obtaining labeled training data.

▪ Finding images is difficult.

▪ Labeling images is time consuming and costly.

▪ How can me make the most out of the labelled data we have?

3

Data Augmentation

If this is a chair:

4

Data Augmentation

If this is a chair… Then so is this!

5

Data Augmentation

If this is a chair… Also this:

6

Data Augmentation

If this is a chair… Also this:

7

Data Augmentation

▪ By slightly altering images, we can increase our effective data size.

▪ Also allows the neural network to learn invariance to certain transformations.

▪ But we need to be careful—this can have unintended consequences.

8

Data Augmentation

Would not want a self-driving car to think these mean the same thing!

9

Data Flows in Keras

▪ Keras has a convenient mechanism for Data Augmentation.

▪ Requires use of “Data Generators”

▪ To date, we have used the standard model.fit mechanism

▪ Holds entire dataset in memory

▪ Reads the batches one by one out of memory

10

Data Flows in Keras

▪ Alternative mechanism is to use a “data generator”

▪ Idea: define a generator object which “serves” the batches of data.

▪ Then use model.fit_generator instead of model.fit

▪ Generators can be used to serve images from disk to conserve working memory

11

ImageDataGenerator

▪ Keras has an ImageDataGenerator class which permits “real-time” data-
augmentation.

▪ When a batch of images is served, you can specify random changes to be
made to the image.

▪ These include shifting, rotating, flipping, and various normalizations of the
pixel values.

12

ImageDataGenerator

keras.preprocessing.image.ImageDataGenerator(

featurewise_center=False, samplewise_center=False,

featurewise_std_normalization=False, samplewise_std_normalization=False,

zca_whitening=False,

rotation_range=0.,

width_shift_range=0.,

height_shift_range=0.,

shear_range=0., zoom_range=0., channel_shift_range=0., fill_mode='nearest',

cval=0.,

horizontal_flip=False, vertical_flip=False,

rescale=None, preprocessing_function=None,

data_format=K.image_data_format())

Lots of options! We’ll discuss a few.

13

Shifting Images

keras.preprocessing.image.ImageDataGenerator(

width_shift_range=0.,

height_shift_range=0.,

...)

▪ These determine the range of possible horizontal or vertical shifts to make to the
image.

▪ Measured as a percentage of the image size.

▪ So if an image is 200 x 200, and width_shift_range=0.1, then it will shift up to 20
pixels to the left or right.

14

Shifting Images (how to fill in)

keras.preprocessing.image.ImageDataGenerator(

...,

fill_mode='nearest', cval=0.,

...)

▪ When shifting, we don’t wish to change the proportions of the image.

▪ We need to “fill in” the pixels on the other side.

▪ Options are "constant", "nearest", "reflect”, "wrap”

▪ The cval is the value when "constant" is specified.

15

Rotating Images

keras.preprocessing.image.ImageDataGenerator(

...,

rotation_range=0.,

...)

allows us to specify a range of possible rotations

▪ This allows us to specify a range of possible rotations

▪ Measured in degrees

▪ So rotation_range=30 means up to a 30 degree rotation (in either direction)

16

Flipping Images

keras.preprocessing.image.ImageDataGenerator(

...,

horizontal_flip=False, vertical_flip=False,

...)

Whether or not to randomly flip in a horizontal or vertical direction.

17

Keras Functional API

▪ So far we have primarily used the Keras Sequential method.

▪ Very convenient when each additional layer takes the results of the previous layer.

▪ However, suppose we have more than one input to a particular layer.

▪ Suppose we have multiple outputs, and want different loss functions for these outputs.

▪ More complicated graph structures require the Functional API.

18

Keras Functional API—principles

▪ Every layer is “callable” on a tensor, and returns a tensor.

▪ Specifically designate inputs using the Input layer.

▪ Merge outputs into a single output using keras.layers.concatentate

▪ Stack layers in a similar fashion to the Sequential model.

▪ Use Model to specify inputs and outputs of your model.

▪ When compiling, can specify different losses for different outputs, and specify how
they should be weighted.

