
Abstract
Compressed sensing (CS) is a signal processing technique that enables faster 
scan times in medical imaging. Philips Healthcare integrated CS methods into 
their magnetic resonance imaging (MRI) scanners to reduce scan time by up to 50 
percent for 2D and 3D sequences, compared to Philips scans without Compressed 
SENSE, with virtually equal image quality. Recently, deep learning methods have 
been explored for reconstructing MRI images, showing good results in terms of 
image quality and speed of reconstruction. Philips Healthcare and Intel report 
on two hybrid frequency-domain/image-domain encoder/decoder architectures 
that produce excellent results in MRI reconstruction. We show how these two 
neural networks can be accelerated on Intel® hardware through use of the Intel® 
Distribution of OpenVINO™ Toolkit. The toolkit allows Philips Healthcare to speed 
up their deep learning inference by as much as 54x over standard, unoptimized 
TensorFlow 1.15, as tested in Philips’ proprietary Linux environment on Intel® Xeon® 
processors.1 We further describe how to leverage the Intel® DevCloud for the Edge, 
which allowed Philips Healthcare to compare performance of their deep learning 
models on Intel Xeon and Intel Core™ processors, Intel Movidius Vision Processing 
Units (VPUs), FPGAs, and integrated GPU hardware in order to design deep learning 
products of various performance, price, power, and form factors.

Introduction
Compressed sensing (CS) is a signal processing technique that reconstructs a signal 
with far fewer data samples than would ordinarily be required by the Nyquist-
Shannon sampling theorem (Candès and Tao, 2004; Donoho, 2006). CS has 
become an important element in medical imaging because it produces high-quality 
scans with fewer data points (Lustig et al., 2007; Chen et al., 2008; Graff and Sidky, 
2015). This allows for shorter scanning times. In 2017, Philips Healthcare integrated 
CS methods into their magnetic resonance imaging (MRI) scanners, which reduced 
scan times by up to 50 percent for 2D and 3D sequences, compared to Philips 
scans without Compressed SENSE, with virtually equal image quality.

In its basic form, CS is a mathematical approach to solving an undetermined linear 
system (Figure 1). In general, such a problem is ill-posed—that is, there are an 
infinite number of solutions to the undetermined system. Compressed sensing 
adds two critical constraints to the problem: (1) the sampling must be incoherent 
(that is, random), and (2) the signal must be sparse in some domain (for example, 
the wavelet domain). Given these two constraints, there are several methods that 
can find a solution.
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Figure 1. An undetermined linear 
system—the vector x is much “taller” than 
the matrix M. In general, an exact solution 
for the vector x cannot be found given 
the vector y and the measurement matrix 
M unless x is found to be sparse and M is 
incoherently sampled. Given those two 
conditions, compressed sensing can be 
used to find a solution.

y M= x

Table of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . .                        1

Introduction . . . . . . . . . . . . . . . . . . . . .                    1

Datasets. . . . . . . . . . . . . . . . . . . . . . . . .                        2

	 Open-source Dataset— 
	 Calgary-Campinas. . . . . . . . . . . . . .             2

	 Open Dataset: fastMRI. . . . . . . . . .         2

Model Topology. . . . . . . . . . . . . . . . . .                 2

	 W-Net. . . . . . . . . . . . . . . . . . . . . . . . .                        2

	 Adaptive-CS-Net. . . . . . . . . . . . . . .              3

Optimization Using the  
Intel Distribution of OpenVINO  
Toolkit . . . . . . . . . . . . . . . . . . . . . . . . . .                         4

Model Optimizer Extensions. . . . . .     5

	 CPU Extensions Library. . . . . . . . .        7

Benchmarking. . . . . . . . . . . . . . . . . . .                  10

Performance. . . . . . . . . . . . . . . . . . . .                   10

Conclusion. . . . . . . . . . . . . . . . . . . . . .                     11

References. . . . . . . . . . . . . . . . . . . . . .                     11

	 System Configurations:. . . . . . . .       12

White Paper

https://en.wikipedia.org/wiki/Compressed_sensing
https://en.wikipedia.org/wiki/Nyquist%E2%80%93Shannon_sampling_theorem
https://en.wikipedia.org/wiki/Nyquist%E2%80%93Shannon_sampling_theorem


White Paper | Philips Healthcare Uses the Intel® Distribution of OpenVINO™ Toolkit and the Intel® DevCloud for the Edge to Accelerate Compressed Sensing 
Image Reconstruction Algorithms for MRI

2

In general, CS solutions involve the L1 minimization of a regularization term through various approaches including least 
squares methods, such as Lasso (Tibshirani, 1996), and iterative optimization methods, such as, Iterative Forward-Backward 
Pursuit (Wang et al., 2016) and the Iterative Shrinkage-Thresholding Algorithm (Beck A, Teboulle M., 2009). More recently, deep 
learning methods provided an alternative approach to solving the sparsity problem and promises to provide reconstructions at 
lower computational cost. Among those, several different approaches are presented, including Generative Adversarial Methods 
models (Yang, 2018), Encoder-Decoder models (Jin, 2016) and unrolled iterative schemes (Pezzotti et al. 2020).

In this whitepaper, we highlight two CS deep learning methods for MR image reconstruction: the open-sourced W-Net (Souza 
and Frayne, 2018) and a proprietary model from Philips Healthcare based on ISTANet (referred to here as Adaptive-CS-
Net).  Philips Healthcare partnered with Intel to benchmark their custom CS topology and determine if Intel hardware could 
provide the mission-critical speed necessary to use this method in their future product designs. Because the Philips topology 
is proprietary, the open-sourced W-Net model has been used to demonstrate the changes needed to optimize both models. 
We demonstrate how the Intel Distribution of OpenVINO toolkit accelerated Philips’ CS model across a wide range of Intel 
hardware, including CPUs, VPUs, FPGAs, , and integrated GPUs—all of which can be evaluated for free on the Intel DevCloud 
for the Edge.   

Datasets
Open-source Dataset—Calgary-Campinas

The Calgary-Campinas Public Brain MR dataset consists 
of T1-weighted MR scans from 359 older adult subjects 
on scanners from three different vendors at 1.5 and 3.0 T 
magnetic field strengths (Souza et al., 2018) (Figure 2). The 
dataset is a collaborative effort between the University of 
Calgary and the University of Campinas with the goal of 
developing innovative deep learning models to reconstruct, 
process, and analyze MR scans. 

Open Dataset: fastMRI

Philips Healthcare provided the knee subset of the fastMRI 
dataset for its model (Zbontar et al., 2018). The data was 
acquired by NYU Langone Health with a 2D protocol with 
a 15-channel knee coil array using Siemens MR machines 
at two different field strengths: 1.5T and 3T. The single coil 
data, which is used in this study, was emulated starting from 
the multi-coil channel acquisition. The dataset contains two 
different acquisition protocols, Proton Density and Proton 
Density with Fat Suppression. It comprised of 973 volumes 
for the training set (34,742 slices), and 199 volumes for 
the validation set (7,135 slices). For the undersampling, a 
randomized 1D mask with fully sampled center is used. 

Model Topology
W-Net

W-Net is a neural network topology that was developed by 
Souza and Frayne (2018). Because the Philips topology is 
proprietary, the W-Net model was chosen to demonstrate the 
changes needed to optimize CS topologies in general. Briefly, 
the model consists of two U-Net topologies (Ronneberger et 
al., 2015) connected by a 2D inverse Fast Fourier Transform 
(IFFT2D) that converts the sampled MR k-space into an image 
domain (Figure 3). W-Net effectively upsamples and de-
noises the scan in both the frequency and spatial domains 
using 2D convolutional filters. This allows it to provide a low-
loss, compressed reconstruction of the MRI despite the large 
undersampling of the k-space input (Figure 4). A pre-trained 
TensorFlow/Keras version of the W-Net model was published 
by Souza and Frayne (2018). The source code and model can 
be found on GitHub under the MIT license.

Figure 2. Visualization of a single slice from validation 
subset of Calgary-Campinas Public Dataset. Every scan 
has between 170 and 180 slices of 256x256 dimensions.

https://software.intel.com/content/www/us/en/develop/tools/openvino-toolkit.html
https://devcloud.intel.com/edge/
https://devcloud.intel.com/edge/
https://sites.google.com/view/calgary-campinas-dataset/home/download?authuser=0#h.p_Z315cDWOv7L2
https://github.com/rmsouza01/Hybrid-CS-Model-MRI
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Adaptive-CS-Net

Philips Healthcare, Research and the Leiden University Medical Center, created a custom architecture (Pezzotti et al, 2020) 
based on the ISTA-Net model (Zhang and Ghanem, 2018).  It uses successive blocks of multiscale transforms to perform the 
CS reconstruction along with several MR priors. Figure 5 shows the resulting architecture, named Adaptive-CS-Net, which is 
trained to produce high resolution MR reconstructions of the knee with a significant reduction in the sampling rate from the 
MRI k-space.

Figure 3. W-Net topology (Souza and Frayne, 2018). It consists of two U-Net encoder/decoder networks (Ronneberger et al., 
2015). The first U-Net (left) reconstructs the k-space representation from the undersampled k-space. The second U-Net (right) 
reconstructs the image from the k-space transformation. An inverse Fast Fourier Transform (IFFT2D) connects the frequency and 
image domains. Custom OpenVINO extensions were created for the TensorFlow/Keras subgraph within the green dotted box.

Figure 4. A random sampling mask that uses only about 20 percent of the MR k-space (left). Visualization of origin slice with 
a mask gives a poor reconstruction with a PSNR of 21.5 (middle). The reconstructed slice with W-Net gives a much better 
reconstruction with a PSNR of 34.8 (right).
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Optimization Using the Intel Distribution of OpenVINO Toolkit 
Pre-trained TensorFlow 1.15 models for W-Net and Adaptive-CS-Net were used as the baseline benchmark for inference 
tests. Standard, unoptimized TensorFlow 1.15 was used for benchmarking TensorFlow as prescribed by Philips proprietary 
Linux environment (via `pip install tensorflow=1.15`). We used the Intel Distribution of OpenVINO toolkit version 2020.2 to 
accelerate the inference latency of these models. This toolkit allows developers to optimize neural network inference on Intel® 
CPU, FPGA, VPU, and integrated GPU hardware.

To enable the toolkit, we first converted the TensorFlow/Keras model to an Intermediate Representation (IR) format using the 
OpenVINO Toolkit Model Optimizer command line tool. The following examples demonstrate how we optimized the W-Net 
model. The same procedure was used to optimize the Adaptive-CS-Net model.

The pre-trained W-Net TensorFlow model was first converted to a single, frozen TensorFlow protobuf file (Figure 6, model 
filename “wnet_20.pb”). Figure 6 shows the Python script used to freeze a TensorFlow model. This script converts the model 
variables to constants and saves both the weights and graph definition into a single protobuf file. It should be noted that the 
OpenVINO toolkit’s Model Optimizer tool can also work from TensorFlow checkpoints and TensorFlow SavedModel formats.

Figure 5. The Adaptive-CS-Net architecture. Successive encoding (U_k (.)) and decoding (U ̂_k (.) filter blocks are trained to 
provide the optimal image reconstruction. 

# Tested with Keras 2.2.4 and TensorFlow 1.15.0
# export PYTHONPATH=Hybrid-CS-Model-MRI/Modules/:$PYTHONPATH
import numpy as np
import tensorflow as tf
import frequency_spatial_network as fsnet

stats = np.load("Hybrid-CS-Model-MRI/Data/stats_fs_unet_norm_20.npy")
model = fsnet.wnet(stats[0], stats[1], stats[2], stats[3],
                   kshape = (5,5), kshape2=(3,3))

model_name = "Hybrid-CS-Model-MRI/Models/wnet_20.hdf5"
model.load_weights(model_name)

import keras as K
sess = K.backend.get_session()
sess.as_default()

graph_def = sess.graph.as_graph_def()
graph_def = tf.graph_util.convert_variables_to_constants(sess, graph_def, 
['conv2d_44/BiasAdd'])

with tf.gfile.FastGFile('wnet_20.pb', 'wb') as f:
    f.write(graph_def.SerializeToString())

Figure 6. This Python script 
demonstrates how to freeze a 
TensorFlow model (the model 
filename is “wnet_20.pb”). Freezing 
a TensorFlow model converts the 
variables on the graph to constants 
and combines the weights and graph 
description into a single file.

https://www.tensorflow.org/guide/checkpoint
https://www.tensorflow.org/guide/saved_model
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Model Optimizer Extensions
The Intel Distribution of OpenVINO toolkit version 2020.2 does not have out-of-the-box support for the frequency domain 
operations that are necessary to execute these CS deep learning models (See Figure 3, subgraph within the green dotted box). 
Although these operations will be added to a future release, Philips Healthcare needed them to be supported immediately 
to meet their design timeline. Fortunately, the toolkit can be easily extended by developers to expand functionality and 
implement new layers. For W-Net, three new layers were created: the TensorFlow operation tf.dtypes.complex, which is 
the complex datatype (Complex); the TensorFlow operation tf.signal.ifft2d, which is the inverse 2D Fast Fourier Transform 
(IFFT2D); and, the TensorFlow operation tf.math.abs, which is the absolute value of a complex datatype (ComplexAbs). For the 
Adaptive-CS-Net the TensorFlow operation tf.signal.fft2d, which is the 2D Fast Fourier Transform (FFT2D), was also created 
in a similar fashion as the IFFT2D. Table 1 shows the subgraph section of the TensorFlow model for these operations/layers 
(Figure 3, subgraph within the green dotted box).

Although we created custom CS layers from scratch, we simplified the design by continuing to work with floating point tensors 
and keeping the same input and output shapes of the subgraph. Although the Intel Distribution of OpenVINO toolkit did not 
have a complex-value datatype, we were able to emulate that datatype tensor using two-channel, float-value tensors with the 
real part in the first channel and the imaginary part in the second channel. Table 2 shows the optimized conversion for the 
TensorFlow subgraph from Table 1.

Table 1: Original subgraph in the TensorFlow topology.

Op Inputs Inputs Data Type Output Output Data Type

Add 1x256x256x2 DT_FLOAT 1x256x256x2 DT_FLOAT

StridedSlice 1x256x256x2 DT_FLOAT 1x256x256 DT_FLOAT

Complex 1x256x256 
1x256x256 DT_FLOAT 1x256x256 DT_COMPLEX64

IFFT2D 1x256x256 DT_COMPLEX64 1x256x256 DT_COMPLEX64

ComplexAbs 1x256x256 DT_COMPLEX64 1x256x256 DT_FLOAT

Table 2: The OpenVINO-optimized version of the TensorFlow subgraph in Table 1.

Op Inputs Inputs Data Type Output Output Data Type

Add 1x256x256x2 DT_FLOAT 1x256x256x2 DT_FLOAT

IFFT2D 1x256x256x2 DT_FLOAT 1x256x256x2 DT_FLOAT

Pow (2.0) 1x256x256x2 DT_FLOAT 1x256x256x2 DT_FLOAT

ReduceSum 1x256x256x2 DT_FLOAT 1x256x256 DT_FLOAT

Pow (0.5) 1x256x256 DT_FLOAT 1x256x256 DT_FLOAT

mo_extensions
  |-- ops
      |-- ifft2d.py
  |-- front
      |-- tf
          |-- complex.py
          |-- complex_abs.py

Figure 7. Directory structure of 
the Model Optimizer extensions.

By maintaining the real and imaginary parts as separate channels, we did not 
need to split the input tensor into real and imaginary parts and could instead 
process it directly within the IFFT2D custom layer. Also, rather than explicitly 
adding a new ComplexAbs operation, we modified the  Model Optimizer to 
convert the ComplexAbs operation into three existing  operations: Pow (2.0), 
which performs an elementwise squaring of the tensor elements; ReduceSum, 
which sums the elements across the channels; and Pow (0.5), which performs an 
elementwise square root.

To modify the Model Optimizer, we created an extensions folder (mo_
extensions) for the custom operations with the directory structure, as shown 
in Figure 7. Note that the complex.py and complex_abs.py operations do 
not require new operations to be defined in the Intel Distribution of OpenVINO 
toolkit, but are simply implemented using a combination of existing toolkit 
functions. Therefore, these Python scripts are placed under the front->tf 
subdirectory to indicate that they are just front-end scripts to the TensorFlow 
graph. On the other hand, ifft2d.py is a new operation that is not based on an 
existing  toolkit function. For this reason, it is placed under the ops subdirectory 
to alert the Model Optimizer that the operation is to be defined by the developer 
using custom C++ code.

https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/dtypes/complex
https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/signal/ifft2d
https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/math/abs
https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/signal/fft2d
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Figures 8 to 10 show the Python code that allows the Model Optimizer to create the custom operations to convert the 
TensorFlow subgraph (Figure 3, green-dotted box) to a toolkit IR. Figure 8 shows the graph replacement for the complex 
datatype. This operation in the subgraph receives 1x256x256x2 tensor as input and produces 1x256x256x1 complex datatype 
tensor. In the case of ComplexAbs we chose a different approach as shown in Figure 9. Instead of subgraph pattern matching, 
we replace every entry of ComplexAbs operation to a chain of three operations that give the equivalent mathematical result: 
elementwise square, reduced summation across the two channels, and an elementwise square root. Finally, Figure 10 shows 
how to register the IFFT2D operation; the actual implementation of this custom operation will be defined elsewhere. The 
“Infer” option in the new class specifies the shape propagation method. This allows the custom IFFT2D node to define its 
shape based on the input shape.

With these three Python scripts in the mo_extensions folder, we were able to use Model Optimizer to convert the frozen 
TensorFlow model to an  IR with the following command:

python3 /opt/intel/openvino/deployment_tools/model_optimizer/mo_tf.py \ 
    --input_model wnet_20.pb \ 
    --input_shape "[1, 256, 256, 2]" \ 
    --extensions /path/to/mo_extensions

where:
      --input_model path to a frozen graph
      �--input_shape TensorFlow model’s input shape (note that this assumes the 

standard TensorFlow NHWC input tensor format)
      --extensions path to our custom extensions

Figure 8. Python code for complex.py custom operation to store a complex datatype.

# mo_extensions/front/tf/complex.py
import logging as log
from mo.front.common.replacement import FrontReplacementSubgraph
from mo.graph.graph import Graph

class Complex(FrontReplacementSubgraph):
    enabled = True

    def pattern(self):
        return dict(
            nodes=[
                ('strided_slice_real', dict(op='StridedSlice')),
                ('strided_slice_imag', dict(op='StridedSlice')),
                ('complex', dict(op='Complex')),
            ],
            edges=[
                ('strided_slice_real', 'complex', {'in': 0}),
                ('strided_slice_real', 'complex', {'in': 1}),
            ])

    @staticmethod
    def replace_sub_graph(graph: Graph, match: dict):
        inp0 = match['strided_slice_real'].in_port(0).get_source().node
        inp1 = match['strided_slice_imag'].in_port(0).get_source().node
        complexNode = match['complex']

        if inp0.id != inp1.id:
            log.debug('The pattern does not correspond to Complex subgraph')
            return

        complexNode.out_port(0).get_connection().set_source(inp0.out_port(0))
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Figure 9. Python code for complex_abs.py custom operation to store a complex absolute value operation. Note the 
TensorFlow operation is split into three parts: an elementwise square, a reduce sum, and an elementwise square root.

Figure 10. Python code for ifft2d.py custom operation. 

# mo_extensions/front/tf/complex_abs.py
import numpy as np
from mo.front.common.replacement import FrontReplacementOp
from mo.graph.graph import Graph, Node
from mo.ops.const import Const
from extensions.ops.elementwise import Pow
from extensions.ops.ReduceOps import ReduceSum

class ComplexAbs(FrontReplacementOp):
    op = "ComplexAbs"
    enabled = True

    def replace_op(self, graph: Graph, node: Node):
        pow_2 = Const(graph, {'value': np.float32(2.0)}).create_node()
        reduce_axis = Const(graph, {'value': np.int32(-1)}).create_node()
        pow_0_5 = Const(graph, {'value': np.float32(0.5)}).create_node()

        sq = Pow(graph, dict(name=node.in_node(0).name + '/sq', power=2.0)) \
             .create_node([node.in_node(0), pow_2])
        
        sum = ReduceSum(graph, dict(name=sq.name + '/sum')) \
              .create_node([sq, reduce_axis])

        sqrt = Pow(graph, dict(name=sum.name + '/sqrt', power=0.5)) \
               .create_node([sum, pow_0_5])

        return [sqrt.id]

# mo_extensions/ops/ifft2d.py 
from mo.front.common.partial_infer.elemental import copy_shape_infer
from mo.graph.graph import Graph
from mo.ops.op import Op

class IFFT2D(Op):
    op = 'IFFT2D'
    enabled = True

    def __init__(self, graph: Graph, attrs: dict):
        super().__init__(graph, {
            'type': __class__.op,
            'op': __class__.op,
            'infer': copy_shape_infer
        }, attrs)

CPU Extensions Library

For the Intel Distribution of OpenVINO toolkit IR model we created in the previous steps, the IFFT2D (and FFT2D) operations 
are not supported out-of-the-box by the toolkit version 2020.2. The previous steps only registered them with the Model 
Optimizer as custom CPU extensions. They did not actually implement those custom functions. To complete the custom 
operations, we need to provide the custom C++ code so that the toolkit’s Inference Engine knows how to execute the custom 
operation in runtime. 

Fortunately, in addition to its deep learning libraries, the Intel Distribution of OpenVINO Toolkit also contains OpenCV, a de 
facto standard library for computer vision. OpenCV has both FFT and IFFT implementation that have been optimized to run 
on Intel hardware. Therefore, all our custom C++ code needs to do is make a library call to the OpenCV optimized functions to 
complete the IFFT2D and FFT2D operations for the Inference Engine.
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The toolkit uses a command line tool called Extension Generator (extgen.py) to generate a CPU extensions library template. 
Following is the log of the  Extension Generator command line session used to create the custom C++ extension code for the 
IFFT2D operation:

$ python3 /opt/intel/openvino/deployment_tools/tools/extension_generator/extgen.py \
    new \
    --ie-cpu-ext \
    --output_dir=/path/to/fft_extensions

Generating:
  Model Optimizer: 
    Extractor for Caffe Custom Layer: No
      Extractor for MxNet Custom Layer: No
    Extractor for TensorFlow Custom Layer: No
      Framework-agnostic operation extension: No
    Inference Engine: 
      CPU extension: Yes
      GPU extension: No
 
Enter operation name:    IFFT2D
 
Enter type for parameters that will be read from IR in format
  <param1> <type>
  <param2> <type>
  ...
Example:
  length int
 
  Supported cpu types: int, float, bool, string, listfloat, listint
 
Enter 'q' when finished:    q
 
**********************************************************************************************
Check your answers for the Inference Engine extension generation:
 
1.  Operation name:                                                        IFFT2D
2.  Parameters types in format <param> <type>:                             []
 
**********************************************************************************************
 
Do you want to change any answer (y/n) ? Default 'no' 
no
 
The following folders and files were created:
 
Stub files for the Inference Engine CPU extension are in /path/to/fft_extensions/user_ie_extensions/cpu folder

As indicated in the log above, the OpenVINO Extension Generator command line tool creates a C++ template (ext_ifft2d.
cpp) for the custom operation. We then added the implementation of IFFT2D over 4-dimensional input tensors using the Intel 
Distribution of OpenCV, as shown in Figure 11. Similarly, the FFT2D function from the Adaptive-CS-Net model was created 
using the same command line tool.
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// fft_extensions/user_ie_extensions/cpu/ext_ifft2d.cpp
#include "ext_list.hpp"
#include "ext_base.hpp"
#include <cmath>
#include <vector>
#include <string>
#include <algorithm>

#include <opencv2/opencv.hpp>
#include <inference_engine.hpp>

namespace InferenceEngine { namespace Extensions { namespace Cpu {

static cv::Mat infEngineBlobToMat(const InferenceEngine::Blob::Ptr& blob) {
    // NOTE: Inference Engine sizes are reversed.
    std::vector<size_t> dims = blob->getTensorDesc().getDims();
    std::vector<int> size(dims.begin(), dims.end());
    auto precision = blob->getTensorDesc().getPrecision();
    CV_Assert(precision == InferenceEngine::Precision::FP32);
    return cv::Mat(size, CV_32F, (void*)blob->buffer());
}

class IFFT2DImpl: public ExtLayerBase {
public:
    explicit IFFT2DImpl(const CNNLayer* layer) {
        addConfig(layer, { { ConfLayout::PLN, false, 0 } },
                         { { ConfLayout::PLN, false, 0 } });
    }

    StatusCode execute(std::vector<Blob::Ptr>& inputs,
                       std::vector<Blob::Ptr>& outputs,
                       ResponseDesc *resp) noexcept override {
        cv::Mat inp = infEngineBlobToMat(inputs[0]);
        cv::Mat inp = infEngineBlobToMat(outputs[0]);

        const int n = inp.size[0];
        const int h = inp.size[2];
        const int w = inp.size[3];
        cv::Mat complex(h, w, CV_32FC2), interleavedOut(h, w, CV_32FC2);
        for (int i = 0; i < n; ++i) {
            std::vector<cv::Mat> components = {
                cv::Mat(h, w, CV_32F, inp.ptr<float>(i, 0)),
                cv::Mat(h, w, CV_32F, inp.ptr<float>(i, 1))
            };
            cv::merge(components, complex);

            cv::idft(complex, interleavedOut, cv::DFT_SCALE);

            components = {
                cv::Mat(h, w, CV_32F, out.ptr<float>(i, 0)),
                cv::Mat(h, w, CV_32F, out.ptr<float>(i, 1))
            };
            cv::split(interleavedOut, components);
        }
        return OK;
    }
};

REG_FACTORY_FOR(ImplFactory<IFFT2DImpl>, IFFT2D);

}}}

Figure 11. C++ code for custom IFFT2D operation. Note that the OpenVINO™ extension generator command line tool created 
this C++ template. We added custom OpenCV calls to the cv::idft function within the “Execute” function. This allows OpenVINO 
to leverage the OpenCV optimized IFFT2D implementation during inference.  
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Lastly, we need to link the Intel Distribution of the OpenCV runtime library by adding the following lines to the generated 
CMakeLists.txt:

find_package(OpenCV REQUIRED)

include_directories(PRIVATE ${OpenCV_INCLUDE_DIRS})

target_link_libraries(${TARGET_NAME} ${OpenCV_LIBS})

After compilation, a shared library called libuser_cpu_extension.so should be created. It can be loaded into the CPU plugin 
when the Inference Engine is first loaded:

from openvino.inference_engine import IENetwork, IECore

net = IENetwork("wnet_20.xml", "wnet_20.bin")

ie = IECore()

ie.add_extension("libuser_cpu_extension.so", "CPU")

exec_net = ie.load_network(net, "CPU")

Benchmarking
All benchmarks were performed on the Intel DevCloud for the Edge, which was chosen by Philips Healthcare because it 
allowed them to easily compare how their specific deep learning models performed on a variety of Intel hardware without 
the need for purchasing and setting up the hardware. The DevCloud also allowed Philips Healthcare to consider price, power, 
and form factor requirements for their specific product needs, although these requirements and comparisons are outside the 
scope of the current paper.      

All Intel Distribution of OpenVINO toolkit benchmarks were performed using the published benchmarking tool. A grid search 
of various batch sizes, number of inference streams, and number of inference requests were performed and the best results 
were reported. 

All TensorFlow benchmarks were performed using a custom Python script and standard, unoptimized TensorFlow 1.15 (using 
`pip install tensorflow=1.15`). After a warm up of 10 inference requests, the elapsed times were recorded for 100 successive 
inference requests using a grid search of batch sizes and threads. The best results from the grid search were reported.

Performance
The Intel DevCloud for the Edge was used to ensure repeatable benchmarks. The Intel DevCloud provides access to different 
Intel hardware targets and has a pre-installed version of the Intel Distribution of OpenVINO toolkit for fast prototyping 
and experimentation. Figure 12 shows the relative speedups of toolkit versus TensorFlow on the W-Net model. The toolkit 
improved inference speed by 19 percent and 20 percent on the Intel Core i7 and Intel Xeon E3 processors, respectively. On the 
Intel Xeon Gold 6138 processor, the toolkit’s optimizations gave more than a 3x speedup in inference.1 It should be noted that 
the W-Net topology is a much smaller model than the Adaptive-CS-Net model, which means that there are fewer places to 
optimize the model. 
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Figure 12. Comparing the unoptimized TensorFlow 1.15.0 (orange) versus OpenVINO™ toolkit 2020.2 (blue) time to process 
W-Net with a 170x256x256 MRI scan by running the network 170 times for each slice on (a) Intel® Core™ i7-8665UE, (b) Intel® 
Xeon® E3 1268L v5, and (c) Intel® Xeon® Gold 6138 processors. The toolkit improved inference speed by 19% and 20% on the 
Intel Core i7 and Intel Xeon E3 processors, respectively. On the Intel Xeon Gold 6138 processor, the toolkit optimizations gave 
a 3x speedup in inference.1 

http://devcloud.intel.com/edge
https://docs.openvinotoolkit.org/latest/_inference_engine_samples_benchmark_app_README.html
https://devcloud.intel.com/edge/
https://devcloud.intel.com/edge/devices/intel-core-i7-8665ue-cpu/
https://devcloud.intel.com/edge/devices/intel-xeon-e3-1268l-v5-cpu/
https://devcloud.intel.com/edge/devices/intel-xeon-e3-1268l-v5-cpu/
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Figure 13. Comparing the unoptimized TensorFlow 1.15.0 (orange) versus OpenVINO™ toolkit 2020.2 (blue) time to process the 
Adaptive-CS-Net model with a 320x320 input image on (a) Intel® Core™ i7-8665UE, (b) Intel® Xeon® E3 1268L v5, and (c) Intel® 
Xeon® Gold 6138 processors. The OpenVINO toolkit optimizations sped up inference by 7.5x, 9.8x, and 54.4x on this hardware, 
respectively. It should be noted that the Adaptive-CS-Net model was a larger, more complex model than the open-sourced 
W-Net. This allowed the toolkit to find more optimizations than could be obtained from the W-Net topology.1 

Figure 13 compares the relative inference latency for the Adaptive-CS-Net model between unoptimized TensorFlow version 
1.15 and Intel Distribution of OpenVINO toolkit version 2020.2 on three different platforms: (a) Intel® Core™ i7-8665UE 
processor, (b) Intel® Xeon® E3 1268L v5 processor, and (c) Intel® Xeon® Gold 6138 processor. The toolkit’s optimizations 
sped up inference by 7.5x and 9.8x on the Intel Core i7 and Intel Xeon E3 processors. The Intel Xeon Gold 6138 processor 
showed an impressive 54.4x speedup in inference via the toolkit optimizations.1 The higher complexity and greater size 
of the proprietary Phillips Healthcare model gave the OpenVINO toolkit more places where it could obtain this significant 
optimization in speed.

Conclusion
The Intel Distribution of  OpenVINO toolkit allows developers to deploy their deep learning models with improved inference 
on a variety of Intel hardware. Using the toolkit’s custom extensions feature, Intel was able to speed up the compressed 
sensing workloads for Philips Healthcare by as much as 54x on an Intel Xeon Gold 6138 processor compared with unoptimized 
TensorFlow. Philips Healthcare was also able to leverage the Intel DevCloud for the Edge to quickly benchmark their CS 
models on Intel CPU, VPU, FPGA, and integrated GPU hardware. This platform helps Philips Healthcare when they plan and 
develop new products by allowing them to easily assess various deep learning pipeline parameters such as performance, 
price, power, and form factors for their designs. 
1 �See backup for configuration details. For more complete information about performance and benchmark results, visit  

www.intel.com/benchmarks. Refer to https://software.intel.com/articles/optimization-notice for more information regarding 
performance and optimization choices in Intel software products.
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Processor

CPU Intel Core i7-8665UE processor Intel Xeon Gold 6138 processor
Intel Xeon E3-1268Lv5 

processor

Sockets / Physical cores 1 / 4 2 / 20 1 / 4

Intel Hyper-Threading 
Technology / Turbo Setting

ON / ON ON / n/a ON / ON

Memory 16 GB 192 GB 32 GB

OS Ubuntu 18.04.2 LTS Ubuntu 18.04.2 LTS Ubuntu 18.04.2 LTS

Kernel  Linux 4.15.0-96 Linux 4.15.0-88 Linux 4.15.0-96

Software
Intel® Distribution of OpenVINO™ 

toolkit 2020.2
Intel Distribution of OpenVINO 

toolkit 2020.2
Intel Distribution of OpenVINO 

toolkit 2020.2

Test Date April 28, 2020 April 28, 2020 April 28, 2020

Microcode 0xca 0x2000069 0xd6

Precision and Batch Size
FP32, 

Batch: 1
FP32, 

Batch: 1
FP32, 

Batch: 1

Spectre/Meltdown Mitigation True True True

Testing completed April 2020 by Intel using the Intel DevCloud for Edge.
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