
White Paper

Table of Contents
Abstract . 1

I . Introduction . 1
II . Model Description 2
III . Model Compression 2
 BFP16 Quantization 3
IV . Hardware Implementation 4
 FPGA Processing Architecture 4
 Using Intel Stratix 10 NX FPGA
 AI Tensor Blocks 4
 Implementing Dilated
 Convolutions on the FPGA 5
 Programming Model 5
V . Results . 6
 Methodology . 6
 Model Quality 6
 Model Performance 6
VI . Conclusion . 7
References . 8

FPGA
Artificial Intelligence

Implementing WaveNet Using Intel® Stratix® 10
NX FPGA for Real-Time Speech Synthesis

Abstract
Real-time text-to-speech models are widely deployed in interactive voice services
such as voice assistants and smart speakers. However, deploying these models is
often challenging due to the strict latency requirements that they face. We present
an implementation of WaveNet, a state-of-the-art vocoder, that can generate
256 16 kHz audio streams at near-human level quality in real time: 8 times higher
throughput than a hand optimized GPU solution. Our implementation is enabled
by the Intel® Stratix® 10 NX FPGA, demonstrating the capability of FPGAs to deliver
high-throughput, low-latency inference for realworld applications powered by
neural networks.

I . Introduction
The increasing use of voice assistants has been powered, in large part, by advances
in the field of Text-to-Speech (TTS). State-of-the-art speech synthesis systems
consist of two neural networks that are run sequentially to generate audio. The first
model takes text as input and generates acoustic features, such as spectrograms,
while the second model, referred to as a vocoder, takes these intermediate features
and produces speech. Tacotron 2 is often used as the first model. In this paper,
we focus on the second model in the speech synthesis system. WaveNet [1] is a
state-of-the art vocoder that is capable of producing speech with near-human-level
naturalness [2]. The key to the model’s quality is its autoregressive loop but this
property also makes the network exceptionally challenging to implement for real-
time applications.

As a result, TTS research has focused on finding alternative vocoder architectures
such as Parallel-WaveNet [3], WaveRNN [4], ClariNet [5] and WaveGlow [6] that
are better suited to efficient inference on existing hardware. There is a degree
of ambiguity as to the highest quality vocoder, as audio quality evaluation is
subjective, but all authors agree the original WaveNet architecture produces at least
as good, if not higher, quality audio than more recent approaches [3], [6]–[9].

There have been some efforts made to accelerate the WaveNet model directly
rather than using an alternative architecture, including some other FPGA solutions
[10]. However, these are not known to achieve real-time audio synthesis. The
implementation with the highest performance that we have been able to identify is
the NVIDIA* nv-wavenet1 that can achieve real-time audio synthesis using highly-
optimised hand-written CUDA kernels.

In this paper, we implement a WaveNet model, with approximately the same
number of parameters in the repeated part of the network, as the largest
configuration of nv-wavenet available in the example repository. The repeated
part of the network is the most latency sensitive section. By using Block Floating
Point (BFP16) quantization and the Intel Stratix 10 NX FPGA, we are able to deploy
this model and produce 256 16 kHz streams in real time. We show that the FPGA
implementation remains efficient at higher frequencies, demonstrating 160 24 kHz
streams and 128 32 kHz streams in real time.

The rest of this paper is structured as follows: the WaveNet model architecture is
presented in more detail in Section II. The concepts of model compression by the
use of quantization and the BFP16 data format are discussed in Section III. Section
IV describes the implementation of the WaveNet model on Intel Stratix 10 NX FPGA,
including the use of AI Tensor Blocks, BFP16 computation and high-bandwidth
memory (HBM). In Section V we present our results, including the performance of
the implementation, as well as the quality of the generated audio. Finally, in Section
VI, we summarize our results and interpret their importance for future deployments
of neural networks in the data center with FPGAs.
1 https://github.com/NVIDIA/nv-wavenet

Authors
Jonny Shipton

Software Lead
Myrtle .ai

Jon Fowler
FPGA Lead

Myrtle .ai

Chris Chalmers
Senior Developer

Myrtle .ai

Sam Davis
Head of Machine Learning

Myrtle .ai

Sam Gooch
Machine Learning Engineer

Myrtle .ai

Giuseppe Coccia
Machine Learning Engineer

Myrtle .ai

2

White Paper | Implementing WaveNet Using Intel Stratix 10 NX FPGA for Real-Time Speech Synthesis

Table 1 . A Breakdown of the Model's Parameters and Giga-Operations Required per Second of Synthesized
Audio Output.

LAYER TYPE
PARAMETERS GOP/SECOND AUDIO

Per-layer Total Per-layer Total
Pre-processing Layers
Embedding
Feature Upsample

Embedding
ConvTranspose1d

30,720
5,120,080

-
0.82

Repeated Layers
Dilation
Conditional
Residual
Skip

Dilated Conv1d
Conv1d
Conv1d
Conv1d

57,840
19,440
14,520
29,040

925,440
311,040
217,800
464,640

1.84
0.61
0.46
0.92

29.49
9.83
6.91

14.75

Post-processing Layers
Out
End

Conv1d
Conv1d

61,440
65,536

1.96
2.09

Total 7,196,696 65.85

II . Model Description
The task of audio generation is that of producing a sequence
of values [x1,...,xn]. Just like in a regular audio file, each value xi
is an integer representing a discrete sample from a waveform.
There are two critical parameters of any audio stream: the
sample rate, which is the number of these samples that make
up a single second of audio, measured in Hertz; and the bit
depth, which is the range of discrete values that each xi can
take. Increasing these parameters improves the quality of the
audio stream but requires the production of more samples
per second or an increase in the number of computations
required for each sample. In this paper, we use a sample rate
of 16 kHz and a bit depth of 16, giving each sample a range
of 65,536 possible values, as we find these to achieve both
near-human-level quality and high performance.

WaveNet is a convolutional neural network that models
the conditional probability of producing a sample given all
previous samples: p(xt|x1,..., xi-1). The input to the first layer
of the model at a given step is an embedding of the model
output from the previous time step. The core of the network
consists of a series of repeated layers that each contain four
convolutions; see Figure 1. The first convolution in each
repeated layer is a dilated convolution where the input is
the concatenation of the output of the previous layer at
the current step, t, and a past step. The past step for the kth
repeated layer depends on the dilation cycle parameter D
and is set to step t - 2k mod D.

Each repeated layer also produces a skip output. The skip
outputs are summed and used to produce the final model
output after post-processing with two more convolutional
layers. In addition to the outputs from the previous layer,
each repeated layer also receives a conditional input
that allows control over what audio is generated. The
conditional inputs are generated by applying an upsampling
transposed convolution to conditional features. In early
versions of WaveNet these conditional features were simple
linguistic features, however, current approaches typically
use spectrograms generated by a separate model such as
Tacotron 2 [2] or Deep Voice 3 [11].

After the two post-processing convolutional layers are
applied, the model samples from the probability distribution
p(xt|x1,..., xi-1); we find sampling to produce higher fidelity
speech than other methods such as selecting the value with
highest probability. The model produces audio output that
has a bit depth of 16. However, to reduce the computational
overhead of producing 216 = 65,536 values the model instead
generates 8-bit µ-law encoded values that are then decoded
to produce the final 16-bit audio sample.

At inference time, calculating the output for one step requires
the value of the previous step, so it is necessary to calculate
each step individually and sequentially. For 16 kHz audio it
is necessary to run the model 16,000 times per second to
achieve real-time audio generation. This means that a single
forward pass through the model must take at most 62.5μs.

WaveNet is parameterized by the number of channels in
its convolutions: the number of skip, residual and audio
channels, as well as by the number of repeated layers and
dilation cycle parameter D. In this paper we use a model with
s = 240 skip channels, r = 120 residual channels, a = 256
audio channels, L = 16 repeated layers and D = 8. This model
has 7.2 million parameters, as shown in Table 1, and requires
approximately 65.85 GFLOPs of computation to generate one
second of audio. We map the ConvTranspose1d layer to CPU
and all other layers to the FPGA. This significantly reduces
model parameters that must be held on the FPGA, requiring
approximately 2.1 million parameters to be stored on the
FPGA overall. The layers running on the FPGA still account for
the majority of the computation, requiring 98.8% of the total
operations of the model.

III . Model Compression
Quantization is one technique for model compression.
Quantizing a model consists of using a different numerical
format for the parameters and/or activations. This lowers
the power consumption and latency, as both the memory
requirements are reduced and the operations can be more
efficiently executed in hardware.

3

BFP16 Quantization

The Intel Stratix 10 NX FPGA incorporates AI Tensor Blocks
that compute with Block Floating Point 16 (BFP16). BFP16 is
a number format that aims to reduce the quantization error
compared to IEEE standard 16-bit floating point number
format (FP16), by keeping the same number of bits but
changing the process by which the values are quantized.
It is a number format that is used especially in FPGA and
ASIC processors because it allows the use of floating point
arithmetic on their fixed-point arithmetic units, which are
much more efficient than the floating point units.

To quantize a cluster of numbers to BFP16, it is necessary to
define the desired block size N. The target cluster is divided
into several blocks with a size determined by the parameter
previously set, so that each block X becomes

where xi is the ith value in the cluster.

White Paper | Implementing WaveNet Using Intel Stratix 10 NX FPGA for Real-Time Speech Synthesis

X = (x1,...,xi,...,xN)

Figure 1 . The WaveNet architecture where the number of skip, residual and audio channels is
parameterised by s, r, a and the number of layers by L.

Converting parameters and activations to a different number
format may require not only a reduction in the number of
bits used to represent each value (e.g. 16 bits instead of 32
bits), but also a change to the arithmetic used when executing
operations with these values (e.g. integer arithmetic instead
of floating point).

There are two approaches that can be followed to quantize
a model. The first approach is post-training quantization
(PTQ) that converts the parameters to the desired numerical
format after the model has been trained. This approach is
simple but, in some cases, can negatively impact the quality
or accuracy of the model. The second approach, Quantization
Aware Training (QAT) [12], mitigates the quality degradation
by simulating the target numerical precision to the weights
during training. In this way, the model is better able to
remove the noise generated by the quantization process.

L REPEATED
LAYERS

+

+

1x1 Conv
r Outputs

1x1 Conv
s Outputs

tanh

Split Channels

Θ σ

2x1 Dilated Conv
2r Outputs

1x1 Conv
2r Outputs

Embedding
r Outputs

16kHz Audio Input
μ-law Features in

[0, a)

800x1 200-Strided Conv
80 Outputs

Mel Spectrogram Input
80 Features

μ-law
Decoding

16kHz 16-bit
Audio Output

Stream

CPU

Activation Operations

Model Layers

Features

FPGA

ReLUReLU 1x1 Conv
a Outputs

1x1 Conv
a OutputsΣ

Sample

16kHz Audio Output
μ-law Features in

[0, a)

The following step is to find the maximum exponent єX for
each block

where ei is the exponent of the ith number in the cluster.

This exponent is the one that is shared by all numbers inside
the target cluster after quantization, whereas the mantissa
values are shifted such that they match the maximum
exponent

where: m'i is the mantissa of the ith number after quantization;
mi is the mantissa of the ith number before quantization;
> represents the right-shift bitwise operation.

The block floating point representation contributes to saving
both the memory and interconnect bandwidth requirements
because, if Le is the number of bits for the exponents, Lm
the number of bits for the mantissas and 1 bit is used to
represent the sign, then the average length of n numbers
is 1 + Lm + Le/n. Conversely, by using a floating point
representation, the average length of n numbers is 1+Lm+Le,
because all numbers have different exponent values.

BFP16 uses 7 bits for the mantissa, 8 bits for the exponent
and 1 bit for the sign. The block size is an important
parameter because it controls the trade-off between the
error generated during the quantization process and the
memory/bandwidth required for each operation. The bigger
the block size, the bigger the quantization error, but the less
space and bandwidth required for the representation.

m'i = mi > (єX - ei)

єX = max ei
	 iЄ	[1,N]

4

White Paper | Implementing WaveNet Using Intel Stratix 10 NX FPGA for Real-Time Speech Synthesis

FPGA Processing Architecture

To realise the implementation of the network on the FPGA,
we use the Myrtle.ai programmable MAU* Core architecture.
The MAU Core is a programmable processing engine for deep
neural networks, that overlays the FPGA fabric to provide a
flexible and run time configurable inference engine. We place
4 MAU Cores, optimized for the Intel Stratix 10 NX FPGA
architecture, onto the FPGA. We floorplan the MAU Cores in
the Intel® Quartus® Prime software to ensure that a high level
of logic utilization can be achieved, whilst retaining a high
clock frequency. The FPGA uses a core processing frequency
of 240 MHz in this design.

Using Intel Stratix 10 NX FPGA AI Tensor Blocks

The Intel Stratix 10 NX FPGA features an innovative AI tensor
block that enables 15 times greater INT8 Tera Operations Per
Second (TOPS) compared to other FPGAs in the Intel Stratix
10 FPGA range. To achieve efficient implementation of the 1D
convolutional layers using Intel Stratix 10 NX FPGA AI Tensor
Blocks we configure the blocks to operate in Tensor Mode.
Computation is performed in BFP16, using a shared exponent
for each block of 10 matrix elements. Each Intel Stratix 10
NX FPGA AI Tensor Block can compute three dot products of
size 10 per clock cycle. Four AI Tensor Blocks are cascaded to
form a dot product width of 120. The architecture of the Intel
Stratix 10 NX FPGA AI Tensor Block is shown in Figure 3.

IV . Hardware Implementation
We implement the WaveNet model on an Intel Stratix 10
NX FPGA. All layers are processed on the FPGA with the
exception of the ConvTranspose1d layer at the input. This
preprocessing layer is not dependent on any previously
generated values and so it can be performed outside of the
core autoregressive WaveNet loop. It is also processed less
frequently than the autoregressive loop at a frequency of
12.5 ms, and without the latency requirement of the main
autoregressive loop. We implement this layer on CPU so that
the FPGA processing can be dedicated to the latency critical
autoregressive part of the network. The remainder of the
network runs on the FPGA, including the 1x1 conv layer that
follows the conditional upsampling layer. While this layer is
not strictly part of the core autoregressive loop, we place this
layer on FPGA, to make use of the computation capability
provided, for this layer, which contributes a significant
number of operations to the overall computation in the
network.

Control

MATRIX-VECTOR UNIT

Weight
Store

Activation
Store

AI Tensor
Block Bfloat16

Bfloat16

Bfloat16

Bfloat16

Bfloat16

Bfloat16

HBM
BFP16

BFP16

BFP16

Long-Term
Activation

Store

Network

Network

HOST
HOST

HBM

Floating
Point

Converter

INPUT CIRCUIT

Input
Select

Accumulate/
Bias

Post
Ops

Output
Split

POST COMPUTE

Figure 2 . The MAU Core Architecture on Intel Stratix 10 NX FPGA.

Each MAU Core connects to the host CPU via PCIe, a
dedicated high-bandwidth memory (HBM) interface and
to the other MAU Cores via a routing network. The routing
network between each pair of neighbouring MAU Cores
carries 120 bfloat16 values on each clock cycle, resulting in
an internal bus bandwidth of 60 GBps.

The architecture of the Intel Stratix 10 NX FPGA optimized
MAU Core is shown in Figure 2. This has all the functionality
required to implement the convolutions within each layer.
In addition to convolutional layers, the MAU Core also has
functionality for tanh, sigmoid, ReLU, gated activations,
softmax sampling and one-hot embedding operations, that
form the post compute unit of the MAU Core.

5

White Paper | Implementing WaveNet Using Intel Stratix 10 NX FPGA for Real-Time Speech Synthesis

Implementing Dilated Convolutions on the FPGA

During inference, we make use of the Fast WaveNet
Generation Algorithm [13] which replaces the dilated
convolutions in the model architecture with regular
convolutions and a buffer to store previously computed
values. The correct values to simulate the dilated convolution
can then be selected from the buffer. This avoids having to
recompute values from previous samples when generating
each new value as we can simply look up the value in the
buffer, greatly improving the model performance.

Dilated convolutions in the network require activation
data from up to 128 previous timesteps. This places a high
throughput and low latency requirement on storage of these
intermediate parameters. Internally to the WaveNet network
the bandwidth requirement to retrieve activations to feed
dilated convolutions is 3.1 GBps per MAU Core. With a need
to store up to 128 activations from previous timesteps, each
core requires a total storage of 10.3 MB. Since this size of

Programming Model

The MAU Cores are programmed at run time for the WaveNet
model. This enables the FPGA to be retargetted to different
model architectures without requiring a recompile of the
FPGA implementation.

We map WaveNet to the four MAU Cores by running multiple
WaveNet layers on each core and time sharing the core logic.
The MAU Core controller handles the execution of the core
logic. Each core operates on a batch of 32 voice channels,
operating the same instruction over each channel of the
batch on consecutive clock cycles. Once all layer operations
have completed for the batch, the activations advance to
the next MAU Core for processing by later layers. The four
cores are pipelined such that a batch of 32 voice channels are
processed in each of the four cores simultaneously, giving
128 voice channels in flight in the FPGA at any one time.

To process greater than 128 concurrent voice channels in real
time, the voice channels are processed as chunks, where a
chunk is an integer number of Mel Spectogram inputs. The
FPGA is able to generate samples at significantly faster than
real-time, enabling the FPGA acceleration to be time shared.
The FPGA is designed to enable chunks to be processed in a
non-continuous mode of operation, with intermediate state
for all active concurrent voice channels held within the HBM
memory.

The model weights are loaded by the side input. The AI
Tensor Block requires 18 clock cycles to load new weights,
and this update occurs in parallel with computation through
the use of a ping pong register. We process different channels
in a batch of 32 so that the weights can be updated every
batch, utilising the Tensor Mode operation at maximum
efficiency. We use 480 AI Tensor Blocks in each MAU Core.
As a result each MAU Core can execute a single 120 x 120
matrix vector multiplication per clock cycle. This gives the
accelerator design a total capacity of 27.6 TOPS across all
four cores.

Model parameters are held locally in on-chip RAM. WaveNet
is a relatively small model, so there is sufficient on-chip
memory available to hold all network parameters locally to
the AI Tensor Blocks. The design allocates 4.5 MB of local
storage to network parameters with 1.3 TBps of bandwidth.

data_in

Preloaded
ping-pong regs

Preloaded
ping-pong regs

Input regs

dotƩ

Fixed to FP32

Shared exp reg

0

0

cascade_data_out
cascade_data_in

Result

Side Input (Weights)

Data Input (Activations)

+

Figure 3 . Intel Stratix 10 NX FPGA AI Tensor Block.2

data store is too large to be accommodated locally inside of
the core we use the HBM memory to store this information.

The use of HBM is preferred over external DDR4 memory on
the platform as the bandwidth available from the HBM on
the platform is 256 GBps vs approximately 21 GBps available
from external DDR4 memory, providing more overhead on
bandwidth for data movement within the system.

2 Credit Graham McKenzie, Intel Programmable Solutions Group.

6

V . Results

Methodology

We use the LJSpeech dataset subsampled to 16 kHz [14].
Prior to starting this project, 100 samples were randomly
selected from the dataset for use as a validation set and 100
samples were randomly selected from the dataset for use as
a test set. All remaining samples are used as a training set. No
data augmentation is applied.

The WaveNet architecture parameters are as defined in
Section II. All models are trained for 140,000 steps with a
batch size of 16 distributed across 1–8 GPUs using mixed
precision training. One element in the batch consists of a
randomly selected 1 second segment from an audio clip in
the training set, padding with zeros where necessary. We use
the Adam optimizer [15] with a fixed learning rate of 10-3,
ß1 = 0.9, ß2 = 0.999, є = 10-8. We use PyTorch [16] to
implement WaveNet and QPyTorch [17] to simulate BFP16
when using QAT.

We report both the teacher-forced cross-entropy validation
and test loss as well as the Mean Opinion Score (MOS) for
each model. For each model, we repeat the training process
3 times and select the model with median validation loss
to compute and report the test loss and test MOS score.
The MOS is computed by asking 30 independent Amazon
Mechanical Turk workers to rate each of the generated
samples on how natural the samples sound on a five point
scale, see Table 3. The reported MOS is the mean of these
scores and a 95% confidence interval is computed using the
t-distribution.

For WaveNet we map the network layers to MAU Cores as
shown in Table 2.

White Paper | Implementing WaveNet Using Intel Stratix 10 NX FPGA for Real-Time Speech Synthesis

CORE LAYER MAPPING

1 Input Embedding & WaveNet Layers 1-3

2 WaveNet Layers 4-8

3 WaveNet Layers 9-13

4 WaveNet Layers 14-16 & Output Convolutions

Table 2 . Mapping WaveNet to MAU Cores

RATING LABEL DESCRIPTION

1 Bad Completely unnatural speech

2 Poor Mostly unnatural speech

3 Fair Equally natural and unnatural speech

4 Good Mostly natural speech

5 Excellent Completely natural speech

Table 3 . Mean Opinion Score Scale

Model Quality

The loss on the validation and test set as well as the MOS
for the baseline FP32 model and the BFP16 models using
PTQ and QAT are presented in Table 4. We find that both the
BFP16 (PTQ) model and the BFP16 (QAT) model are capable
of synthesizing high fidelity audio that is near the baseline
FP32 model.

MODEL VALIDATION
LOSS TEST LOSS TEST MOS

Human - - 4.056 ± 0.034

FP32 2.189 2.182 3.976 ± 0.027

BFP16 (PTQ) 2.203 2.197 3.711 ± 0.029

BFP16 (QAT) 2.195 2.188 3.823 ± 0.028

Table 4 . Quality Results for the FP32 and BFP16 WaveNet
 Models.

Model Performance

We present key parameters and processing performance in
Table 5 for the WaveNet model running on an Intel Stratix
10 NX FPGA. Comparisons are made against nv-wavenet
running on V100 Graphics Processing Unit (GPU). At the time
of writing, this is the fastest previous implementation of
WaveNet that we have been able to reference.

We make power comparisons based on Thermal Design
Power (TDP) of the two platforms. This is an overestimate
of true power consumption for the application for both
platforms. TDP for the Intel Stratix 10 NX FPGA is based on
design analysis provided by Intel for a PCIe-based accelerator
card deployment.

The number of concurrent voice channels is the maximum
number of channels that can be generated in real time to
meet a 16 kHz sample rate. The FPGA implementation uses
slightly smaller layer sizes than the GPU implementation, but
has a larger number of model parameters and operations,
due to the inclusion of the conditional layer in the accelerated
part of the model, which is not part of the nv-wavenet
implementation.

The Intel Stratix 10 NX FPGA implementation demonstrates a
8 times improvement in number of concurrent voice streams
when compared to nv-wavenet. The FPGA is able to achieve
a 8.6 times improvement in achieved TOPS for the WaveNet
model.

The FPGA provides a significantly more power efficient
solution, providing a 9.3 times improvement in voice
channels per watt and a 10 times improvement in GOPS/W.

We present the number of concurrent voice channels for
audio frequencies at 16 kHz and above in Table 6. This shows
that the FPGA solution remains efficient, even as the latency
requirement to produce a single time step is reduced.

7

White Paper | Implementing WaveNet Using Intel Stratix 10 NX FPGA for Real-Time Speech Synthesis

VI . Conclusion
This paper has shown that real-time performance can be
achieved for 256 concurrent streams of the state-of-the-art
WaveNet model to achieve near-human levels of synthesized
speech by using a dedicated FPGA-based accelerator. This is
an improvement of 8 times the best GPU solution currently
available for this model.

We show that in higher frequency deployments, the FPGA
advantage increases further, enabling a 10 times advantage
at 24 kHz and 16 times advantage at 32 kHz, compared to
the best GPU solution currently available. This enables a cost
effective platform for deployment of WaveNet at higher audio
frequencies, enabling 128 concurrent streams of 32 kHz
audio on one accelerator.

We show that the FPGA is able to provide a significant energy
reduction in the implementation ofWaveNet, a 10 times
improvement compared to a GPU implementation, enabling
significant energy savings to be made by those who deploy
real-time speech synthesis at scale.

We demonstrate that the BFP16 format can be applied post
training to enable a simple quantization flow from FP32, with
minimal loss of accuracy. This provides a simple and effective
quantization flow from machine learning frameworks,
whilst enabling the benefit of a more efficient hardware
implementation.

We implement the ConvTranspose1d on an Intel® Xeon®
processor dual socket 16 core CPU running at 2.8 GHz.
Each input step corresponds to 200 output steps (stride)
and hence one input step must be processed every
12.5 ms to generate output steps for 16 kHz audio. We
implement our own ConvTranspose1d variant, which
runs at an order of magnitude faster than the PyTorch
native implementation. We use a batch size of 64 running
independently on each socket. We measure the 99.999-ile
latency at 3.85 ms for each batch, sufficiently fast to run 3
batches of 64 on each socket within the 12.5 ms processing
requirement. This configuration enables the CPU to compute
the ConvTranspose1d for up to 384 concurrent voice
channels, sufficient to feed the FPGA implementation, and
demonstrating a full system implementation of WaveNet
capable of generating 256 concurrent voice channels.

MYRTLE .AI WAVENET NV-WAVENET

Platform Intel® Stratix® 10 NX FPGA NVIDIA* V100 GPU

Frequency (MHz) 240 1530

Numerical Precision BFP16 / bfloat16 fp16

WaveNet Configuration r=120, s=240, L=16, a=256, D=8 r=128, s=256, L=16, a=256, D=8

Operations per 1 second audio (GOPS/second) 65.03 60.36

Model Parameters (Millions) 2.08 1.99

Concurrent Voice Channels 256 32

Application TOPS 16.6 1.93

TDP Power (W) 215 250

Performance per Watt (GOPS/W) 77.4 7.7

Voice Channels per Watt (1/W) 1.19 0.128

Table 5 . Performance Results for WaveNet Implementation at 16 kHz.

AUDIO FREQUENCY
CONCURRENT VOICE CHANNELS

MYRTLE .AI WAVENET NV-WAVENET

16 kHz 256 32

24 kHz 160 16

32 kHz 128 8

Table 6 . Performance Results for WaveNet Implementation
for Different Audio Frequencies.

8

 Please Recycle

Intel does not control or audit third-party data. You should consult other sources to evaluate accuracy.

Tests measure performance of components on a particular test, in specific systems. Differences in hardware, software, or configuration will affect actual performance. Consult other sources of
information to evaluate performance as you consider your purchase. For more complete information about performance and benchmark results, visit www.intel.com/benchmarks.

Results have been estimated or simulated.

Intel technologies may require enabled hardware, software or service activation.

No product or component can be absolutely secure.

Your costs and results may vary.

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel products described herein. You agree to grant Intel a non-
exclusive, royalty-free license to any patent claim thereafter drafted which includes subject matter disclosed herein.

The products described may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available
on request.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. *Other names and brands may be claimed as the property of others.

WP-01304-1.0

References
[1] A. v. d. Oord, S. Dieleman, H. Zen, K. Simonyan, O.

Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K.
Kavukcuoglu, “Wavenet: A generative model for raw
audio,” arXiv preprint arXiv:1609.03499, 2016.

[2] J. Shen, R. Pang, R. J. Weiss, M. Schuster, N. Jaitly, Z.
Yang, Z. Chen, Y. Zhang, Y. Wang, R. Skerrv-Ryan et al.,
“Natural tts synthesis by conditioning wavenet on mel
spectrogram predictions,” in 2018 IEEE International
Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2018, pp. 4779–4783.

[3] A. Oord, Y. Li, I. Babuschkin, K. Simonyan, O. Vinyals,
K. Kavukcuoglu, G. Driessche, E. Lockhart, L. Cobo, F.
Stimberg et al., “Parallel wavenet: Fast high-fidelity
speech synthesis,” in International conference on
machine learning, 2018, pp. 3918–3926.

[4] N. Kalchbrenner, E. Elsen, K. Simonyan, S. Noury, N.
Casagrande, E. Lockhart, F. Stimberg, A. v. d. Oord, S.
Dieleman, and K. Kavukcuoglu, “Efficient neural audio
synthesis,” arXiv preprint arXiv:1802.08435, 2018.

[5] W. Ping, K. Peng, and J. Chen, “Clarinet: Parallel wave
generation in end-to-end text-to-speech,” arXiv preprint
arXiv:1807.07281, 2018.

[6] R. Prenger, R. Valle, and B. Catanzaro, “Waveglow: A
flow-based generative network for speech synthesis,”
in ICASSP 2019-2019 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). IEEE,
2019, pp. 3617–3621.

[7] S. Kim, S.-g. Lee, J. Song, J. Kim, and S. Yoon,
“Flowavenet: A generative flow for raw audio,” arXiv
preprint arXiv:1811.02155, 2018.

[8] Q. Tian, Z. Zhang, H. Lu, L.-H. Chen, and S. Liu,
“Featherwave: An efficient high-fidelity neural vocoder
with multi-band linear prediction,” arXiv preprint
arXiv:2005.05551, 2020.

[9] P.-c. Hsu and H.-y. Lee, “Wg-wavenet: Real-time high-
fidelity speech synthesis without gpu,” arXiv preprint
arXiv:2005.07412, 2020.

White Paper | Implementing WaveNet Using Intel Stratix 10 NX FPGA for Real-Time Speech Synthesis

[10] S. Hussain, M. Javaheripi, P. Neekhara, R. Kastner, and
F. Koushanfar, “Fastwave: Accelerating autoregressive
convolutional neural networks on fpga,” arXiv preprint
arXiv:2002.04971, 2020.

[11] W. Ping, K. Peng, A. Gibiansky, S. O. Arik, A. Kannan, S.
Narang, J. Raiman, and J. Miller, “Deep voice 3: Scaling
text-to-speech with convolutional sequence learning,”
arXiv preprint arXiv:1710.07654, 2017.

[12] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A.
Howard, H. Adam, and D. Kalenichenko, “Quantization
and training of neural networks for efficient integer-
arithmetic-only inference,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern
Recognition, 2018, pp. 2704–2713.

[13] T. L. Paine, P. Khorrami, S. Chang, Y. Zhang, P.
Ramachandran, M. A. Hasegawa-Johnson, and T. S.
Huang, “Fast wavenet generation algorithm,” arXiv
preprint arXiv:1611.09482, 2016.

[14] K. Ito and L. Johnson, “The lj speech dataset,”
https://keithito.com/ LJ-Speech-Dataset/, 2017.

[15] D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” arXiv preprint arXiv:1412.6980, 2014.

[16] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury,
G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga,
A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison,
A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai,
and S. Chintala, “Pytorch: An imperative style, high-
performance deep learning library,” in Advances in
Neural Information Processing Systems 32, H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alch é-Buc, E. Fox,
and R. Garnett, Eds. Curran Associates, Inc., 2019, pp.
8024–8035. [Online]. Available: http://papers.neurips.
cc/paper/9015-pytorch-an-imperative-style-high-
performance-deep-learning-library.pdf

[17] T. Zhang, Z. Lin, G. Yang, and C. De Sa, “Qpytorch: A
low-precision arithmetic simulation framework,” arXiv
preprint arXiv:1910.04540, 2019.

https://keithito.com/ LJ-Speech-Dataset/
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

