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Implementing WaveNet Using Intel® Stratix® 10 
NX FPGA for Real-Time Speech Synthesis

Abstract
Real-time text-to-speech models are widely deployed in interactive voice services 
such as voice assistants and smart speakers. However, deploying these models is 
often challenging due to the strict latency requirements that they face. We present 
an implementation of WaveNet, a state-of-the-art vocoder, that can generate 
256 16 kHz audio streams at near-human level quality in real time: 8 times higher 
throughput than a hand optimized GPU solution. Our implementation is enabled 
by the Intel® Stratix® 10 NX FPGA, demonstrating the capability of FPGAs to deliver 
high-throughput, low-latency inference for realworld applications powered by 
neural networks.

I . Introduction
The increasing use of voice assistants has been powered, in large part, by advances 
in the field of Text-to-Speech (TTS). State-of-the-art speech synthesis systems 
consist of two neural networks that are run sequentially to generate audio. The first 
model takes text as input and generates acoustic features, such as spectrograms, 
while the second model, referred to as a vocoder, takes these intermediate features 
and produces speech. Tacotron 2 is often used as the first model. In this paper, 
we focus on the second model in the speech synthesis system. WaveNet [1] is a 
state-of-the art vocoder that is capable of producing speech with near-human-level 
naturalness [2]. The key to the model’s quality is its autoregressive loop but this 
property also makes the network exceptionally challenging to implement for real-
time applications. 

As a result, TTS research has focused on finding alternative vocoder architectures 
such as Parallel-WaveNet [3], WaveRNN [4], ClariNet [5] and WaveGlow [6] that 
are better suited to efficient inference on existing hardware. There is a degree 
of ambiguity as to the highest quality vocoder, as audio quality evaluation is 
subjective, but all authors agree the original WaveNet architecture produces at least 
as good, if not higher, quality audio than more recent approaches [3], [6]–[9]. 

There have been some efforts made to accelerate the WaveNet model directly 
rather than using an alternative architecture, including some other FPGA solutions 
[10]. However, these are not known to achieve real-time audio synthesis. The 
implementation with the highest performance that we have been able to identify is 
the NVIDIA* nv-wavenet1 that can achieve real-time audio synthesis using highly-
optimised hand-written CUDA kernels. 

In this paper, we implement a WaveNet model, with approximately the same 
number of parameters in the repeated part of the network, as the largest 
configuration of nv-wavenet available in the example repository. The repeated 
part of the network is the most latency sensitive section. By using Block Floating 
Point (BFP16) quantization and the Intel Stratix 10 NX FPGA, we are able to deploy 
this model and produce 256 16 kHz streams in real time. We show that the FPGA 
implementation remains efficient at higher frequencies, demonstrating 160 24 kHz 
streams and 128 32 kHz streams in real time.

The rest of this paper is structured as follows: the WaveNet model architecture is 
presented in more detail in Section II. The concepts of model compression by the 
use of quantization and the BFP16 data format are discussed in Section III. Section 
IV describes the implementation of the WaveNet model on Intel Stratix 10 NX FPGA, 
including the use of AI Tensor Blocks, BFP16 computation and high-bandwidth 
memory (HBM). In Section V we present our results, including the performance of 
the implementation, as well as the quality of the generated audio. Finally, in Section 
VI, we summarize our results and interpret their importance for future deployments 
of neural networks in the data center with FPGAs.
1 https://github.com/NVIDIA/nv-wavenet
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Table 1 .   A Breakdown of the Model's Parameters and Giga-Operations Required per Second of Synthesized 
Audio Output.

LAYER TYPE
# PARAMETERS GOP/SECOND AUDIO

Per-layer Total Per-layer Total
Pre-processing Layers
Embedding
Feature Upsample

Embedding
ConvTranspose1d

30,720
5,120,080

-
0.82

Repeated Layers
Dilation
Conditional
Residual
Skip

Dilated Conv1d
Conv1d
Conv1d
Conv1d

57,840
19,440
14,520
29,040

925,440
311,040
217,800
464,640

1.84
0.61
0.46
0.92

29.49
9.83
6.91

14.75

Post-processing Layers
Out
End

Conv1d
Conv1d

61,440
65,536

1.96
2.09

Total 7,196,696 65.85

II . Model Description
The task of audio generation is that of producing a sequence 
of values [x1,...,xn]. Just like in a regular audio file, each value xi 
is an integer representing a discrete sample from a waveform. 
There are two critical parameters of any audio stream: the 
sample rate, which is the number of these samples that make 
up a single second of audio, measured in Hertz; and the bit 
depth, which is the range of discrete values that each xi can 
take. Increasing these parameters improves the quality of the 
audio stream but requires the production of more samples 
per second or an increase in the number of computations 
required for each sample. In this paper, we use a sample rate 
of 16 kHz and a bit depth of 16, giving each sample a range 
of 65,536 possible values, as we find these to achieve both 
near-human-level quality and high performance. 

WaveNet is a convolutional neural network that models 
the conditional probability of producing a sample given all 
previous samples: p(xt|x1,..., xi-1). The input to the first layer 
of the model at a given step is an embedding of the model 
output from the previous time step. The core of the network 
consists of a series of repeated layers that each contain four 
convolutions; see Figure 1. The first convolution in each 
repeated layer is a dilated convolution where the input is 
the concatenation of the output of the previous layer at 
the current step, t, and a past step. The past step for the kth 
repeated layer depends on the dilation cycle parameter D 
and is set to step t - 2k mod D.

Each repeated layer also produces a skip output. The skip 
outputs are summed and used to produce the final model 
output after post-processing with two more convolutional 
layers. In addition to the outputs from the previous layer, 
each repeated layer also receives a conditional input 
that allows control over what audio is generated. The 
conditional inputs are generated by applying an upsampling 
transposed convolution to conditional features. In early 
versions of WaveNet these conditional features were simple 
linguistic features, however, current approaches typically 
use spectrograms generated by a separate model such as 
Tacotron 2 [2] or Deep Voice 3 [11].

After the two post-processing convolutional layers are 
applied, the model samples from the probability distribution 
p(xt|x1,..., xi-1); we find sampling to produce higher fidelity 
speech than other methods such as selecting the value with 
highest probability. The model produces audio output that 
has a bit depth of 16. However, to reduce the computational 
overhead of producing 216 = 65,536 values the model instead 
generates 8-bit µ-law encoded values that are then decoded 
to produce the final 16-bit audio sample.

At inference time, calculating the output for one step requires 
the value of the previous step, so it is necessary to calculate 
each step individually and sequentially. For 16 kHz audio it 
is necessary to run the model 16,000 times per second to 
achieve real-time audio generation. This means that a single 
forward pass through the model must take at most 62.5μs.

WaveNet is parameterized by the number of channels in 
its convolutions: the number of skip, residual and audio 
channels, as well as by the number of repeated layers and 
dilation cycle parameter D. In this paper we use a model with 
s = 240 skip channels, r = 120 residual channels, a = 256 
audio channels, L = 16 repeated layers and D = 8. This model 
has 7.2 million parameters, as shown in Table 1, and requires 
approximately 65.85 GFLOPs of computation to generate one 
second of audio. We map the ConvTranspose1d layer to CPU 
and all other layers to the FPGA. This significantly reduces 
model parameters that must be held on the FPGA, requiring 
approximately 2.1 million parameters to be stored on the 
FPGA overall. The layers running on the FPGA still account for 
the majority of the computation, requiring 98.8% of the total 
operations of the model.

III . Model Compression
Quantization is one technique for model compression. 
Quantizing a model consists of using a different numerical 
format for the parameters and/or activations. This lowers 
the power consumption and latency, as both the memory 
requirements are reduced and the operations can be more 
efficiently executed in hardware.
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BFP16 Quantization

The Intel Stratix 10 NX FPGA incorporates AI Tensor Blocks 
that compute with Block Floating Point 16 (BFP16). BFP16 is 
a number format that aims to reduce the quantization error 
compared to IEEE standard 16-bit floating point number 
format (FP16), by keeping the same number of bits but 
changing the process by which the values are quantized. 
It is a number format that is used especially in FPGA and 
ASIC processors because it allows the use of floating point 
arithmetic on their fixed-point arithmetic units, which are 
much more efficient than the floating point units. 

To quantize a cluster of numbers to BFP16, it is necessary to 
define the desired block size N. The target cluster is divided 
into several blocks with a size determined by the parameter 
previously set, so that each block X becomes

where xi is the ith value in the cluster.

White Paper | Implementing WaveNet Using Intel Stratix 10 NX FPGA for Real-Time Speech Synthesis

X = (x1,...,xi,...,xN)

Figure 1 .  The WaveNet architecture where the number of skip, residual and audio channels is 
parameterised by s, r, a and the number of layers by L.

Converting parameters and activations to a different number 
format may require not only a reduction in the number of 
bits used to represent each value (e.g. 16 bits instead of 32 
bits), but also a change to the arithmetic used when executing 
operations with these values (e.g. integer arithmetic instead 
of floating point).

There are two approaches that can be followed to quantize 
a model. The first approach is post-training quantization 
(PTQ) that converts the parameters to the desired numerical 
format after the model has been trained. This approach is 
simple but, in some cases, can negatively impact the quality 
or accuracy of the model. The second approach, Quantization 
Aware Training (QAT) [12], mitigates the quality degradation 
by simulating the target numerical precision to the weights 
during training. In this way, the model is better able to 
remove the noise generated by the quantization process.
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The following step is to find the maximum exponent єX for 
each block

where ei is the exponent of the ith number in the cluster.

This exponent is the one that is shared by all numbers inside 
the target cluster after quantization, whereas the mantissa 
values are shifted such that they match the maximum 
exponent

where: m'i is the mantissa of the ith number after quantization; 
mi is the mantissa of the ith number before quantization;   
> represents the right-shift bitwise operation.

The block floating point representation contributes to saving 
both the memory and interconnect bandwidth requirements 
because, if Le is the number of bits for the exponents, Lm 
the number of bits for the mantissas and 1 bit is used to 
represent the sign, then the average length of n numbers 
is 1 + Lm + Le/n. Conversely, by using a floating point 
representation, the average length of n numbers is 1+Lm+Le, 
because all numbers have different exponent values.

BFP16 uses 7 bits for the mantissa, 8 bits for the exponent 
and 1 bit for the sign. The block size is an important 
parameter because it controls the trade-off between the 
error generated during the quantization process and the 
memory/bandwidth required for each operation. The bigger 
the block size, the bigger the quantization error, but the less 
space and bandwidth required for the representation.

m'i = mi > (єX - ei)

єX =  max ei 
	 iЄ	[1,N]
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FPGA Processing Architecture

To realise the implementation of the network on the FPGA, 
we use the Myrtle.ai programmable MAU* Core architecture. 
The MAU Core is a programmable processing engine for deep 
neural networks, that overlays the FPGA fabric to provide a 
flexible and run time configurable inference engine. We place 
4 MAU Cores, optimized for the Intel Stratix 10 NX FPGA 
architecture, onto the FPGA. We floorplan the MAU Cores in 
the Intel® Quartus® Prime software to ensure that a high level 
of logic utilization can be achieved, whilst retaining a high 
clock frequency. The FPGA uses a core processing frequency 
of 240 MHz in this design.

Using Intel Stratix 10 NX FPGA AI Tensor Blocks

The Intel Stratix 10 NX FPGA features an innovative AI tensor 
block that enables 15 times greater INT8 Tera Operations Per 
Second (TOPS) compared to other FPGAs in the Intel Stratix 
10 FPGA range. To achieve efficient implementation of the 1D 
convolutional layers using Intel Stratix 10 NX FPGA AI Tensor 
Blocks we configure the blocks to operate in Tensor Mode. 
Computation is performed in BFP16, using a shared exponent 
for each block of 10 matrix elements. Each Intel Stratix 10 
NX FPGA AI Tensor Block can compute three dot products of 
size 10 per clock cycle. Four AI Tensor Blocks are cascaded to 
form a dot product width of 120. The architecture of the Intel 
Stratix 10 NX FPGA AI Tensor Block is shown in Figure 3.

IV . Hardware Implementation
We implement the WaveNet model on an Intel Stratix 10 
NX FPGA. All layers are processed on the FPGA with the 
exception of the ConvTranspose1d layer at the input. This 
preprocessing layer is not dependent on any previously 
generated values and so it can be performed outside of the 
core autoregressive WaveNet loop. It is also processed less 
frequently than the autoregressive loop at a frequency of 
12.5 ms, and without the latency requirement of the main 
autoregressive loop. We implement this layer on CPU so that 
the FPGA processing can be dedicated to the latency critical 
autoregressive part of the network. The remainder of the 
network runs on the FPGA, including the 1x1 conv layer that 
follows the conditional upsampling layer. While this layer is 
not strictly part of the core autoregressive loop, we place this 
layer on FPGA, to make use of the computation capability 
provided, for this layer, which contributes a significant 
number of operations to the overall computation in the 
network.

Control
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Figure 2 .  The MAU Core Architecture on Intel Stratix 10 NX FPGA.

Each MAU Core connects to the host CPU via PCIe, a 
dedicated high-bandwidth memory (HBM) interface and 
to the other MAU Cores via a routing network. The routing 
network between each pair of neighbouring MAU Cores 
carries 120 bfloat16 values on each clock cycle, resulting in 
an internal bus bandwidth of 60 GBps.

The architecture of the Intel Stratix 10 NX FPGA optimized 
MAU Core is shown in Figure 2. This has all the functionality 
required to implement the convolutions within each layer. 
In addition to convolutional layers, the MAU Core also has 
functionality for tanh, sigmoid, ReLU, gated activations, 
softmax sampling and one-hot embedding operations, that 
form the post compute unit of the MAU Core.
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Implementing Dilated Convolutions on the FPGA

During inference, we make use of the Fast WaveNet 
Generation Algorithm [13] which replaces the dilated 
convolutions in the model architecture with regular 
convolutions and a buffer to store previously computed 
values. The correct values to simulate the dilated convolution 
can then be selected from the buffer. This avoids having to 
recompute values from previous samples when generating 
each new value as we can simply look up the value in the 
buffer, greatly improving the model performance. 

Dilated convolutions in the network require activation 
data from up to 128 previous timesteps. This places a high 
throughput and low latency requirement on storage of these 
intermediate parameters. Internally to the WaveNet network 
the bandwidth requirement to retrieve activations to feed 
dilated convolutions is 3.1 GBps per MAU Core. With a need 
to store up to 128 activations from previous timesteps, each 
core requires a total storage of 10.3 MB. Since this size of 

Programming Model

The MAU Cores are programmed at run time for the WaveNet 
model. This enables the FPGA to be retargetted to different 
model architectures without requiring a recompile of the 
FPGA implementation. 

We map WaveNet to the four MAU Cores by running multiple 
WaveNet layers on each core and time sharing the core logic.  
The MAU Core controller handles the execution of the core 
logic.  Each core operates on a batch of 32 voice channels, 
operating the same instruction over each channel of the 
batch on consecutive clock cycles. Once all layer operations 
have completed for the batch, the activations advance to 
the next MAU Core for processing by later layers.  The four 
cores are pipelined such that a batch of 32 voice channels are 
processed in each of the four cores simultaneously, giving 
128 voice channels in flight in the FPGA at any one time. 

To process greater than 128 concurrent voice channels in real 
time, the voice channels are processed as chunks, where a 
chunk is an integer number of Mel Spectogram inputs.  The 
FPGA is able to generate samples at significantly faster than 
real-time, enabling the FPGA acceleration to be time shared.  
The FPGA is designed to enable chunks to be processed in a 
non-continuous mode of operation, with intermediate state 
for all active concurrent voice channels held within the HBM 
memory.

The model weights are loaded by the side input. The AI 
Tensor Block requires 18 clock cycles to load new weights, 
and this update occurs in parallel with computation through 
the use of a ping pong register. We process different channels 
in a batch of 32 so that the weights can be updated every 
batch, utilising the Tensor Mode operation at maximum 
efficiency. We use 480 AI Tensor Blocks in each MAU Core. 
As a result each MAU Core can execute a single 120 x 120 
matrix vector multiplication per clock cycle. This gives the 
accelerator design a total capacity of 27.6 TOPS across all 
four cores.

Model parameters are held locally in on-chip RAM. WaveNet 
is a relatively small model, so there is sufficient on-chip 
memory available to hold all network parameters locally to 
the AI Tensor Blocks. The design allocates 4.5 MB of local 
storage to network parameters with 1.3 TBps of bandwidth.

data_in

Preloaded
ping-pong regs

Preloaded
ping-pong regs

Input regs

dotƩ

Fixed to FP32

Shared exp reg

0

0

cascade_data_out
cascade_data_in

Result

Side Input (Weights)

Data Input (Activations)

+

Figure 3 .  Intel Stratix 10 NX FPGA AI Tensor Block.2

data store is too large to be accommodated locally inside of 
the core we use the HBM memory to store this information.

The use of HBM is preferred over external DDR4 memory on 
the platform as the bandwidth available from the HBM on 
the platform is 256 GBps vs approximately 21 GBps available 
from external DDR4 memory, providing more overhead on 
bandwidth for data movement within the system.

2 Credit Graham McKenzie, Intel Programmable Solutions Group.
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V . Results

Methodology

We use the LJSpeech dataset subsampled to 16 kHz [14]. 
Prior to starting this project, 100 samples were randomly 
selected from the dataset for use as a validation set and 100 
samples were randomly selected from the dataset for use as 
a test set. All remaining samples are used as a training set. No 
data augmentation is applied.

The WaveNet architecture parameters are as defined in 
Section II. All models are trained for 140,000 steps with a 
batch size of 16 distributed across 1–8 GPUs using mixed 
precision training. One element in the batch consists of a 
randomly selected 1 second segment from an audio clip in 
the training set, padding with zeros where necessary. We use 
the Adam optimizer [15] with a fixed learning rate of 10-3,  
ß1 = 0.9, ß2 = 0.999, є = 10-8. We use PyTorch [16] to 
implement WaveNet and QPyTorch [17] to simulate BFP16 
when using QAT.

We report both the teacher-forced cross-entropy validation 
and test loss as well as the Mean Opinion Score (MOS) for 
each model. For each model, we repeat the training process 
3 times and select the model with median validation loss 
to compute and report the test loss and test MOS score. 
The MOS is computed by asking 30 independent Amazon 
Mechanical Turk workers to rate each of the generated 
samples on how natural the samples sound on a five point 
scale, see Table 3. The reported MOS is the mean of these 
scores and a 95% confidence interval is computed using the 
t-distribution.

For WaveNet we map the network layers to MAU Cores as 
shown in Table 2.
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# CORE LAYER MAPPING

1 Input Embedding & WaveNet Layers 1-3

2 WaveNet Layers 4-8

3 WaveNet Layers 9-13

4 WaveNet Layers 14-16 & Output Convolutions

Table 2 .   Mapping WaveNet to MAU Cores

RATING LABEL DESCRIPTION

1 Bad Completely unnatural speech

2 Poor Mostly unnatural speech

3 Fair Equally natural and unnatural speech

4 Good Mostly natural speech

5 Excellent Completely natural speech

Table 3 .   Mean Opinion Score Scale

Model Quality

The loss on the validation and test set as well as the MOS 
for the baseline FP32 model and the BFP16 models using 
PTQ and QAT are presented in Table 4. We find that both the 
BFP16 (PTQ) model and the BFP16 (QAT) model are capable 
of synthesizing high fidelity audio that is near the baseline 
FP32 model.

MODEL VALIDATION 
LOSS TEST LOSS TEST MOS

Human - - 4.056 ± 0.034

FP32 2.189 2.182 3.976 ± 0.027

BFP16 (PTQ) 2.203 2.197 3.711 ± 0.029

BFP16 (QAT) 2.195 2.188 3.823 ± 0.028

Table 4 .  Quality Results for the FP32 and BFP16 WaveNet  
 Models.

Model Performance

We present key parameters and processing performance in 
Table 5 for the WaveNet model running on an Intel Stratix 
10 NX FPGA. Comparisons are made against nv-wavenet 
running on V100 Graphics Processing Unit (GPU). At the time 
of writing, this is the fastest previous implementation of 
WaveNet that we have been able to reference.

We make power comparisons based on Thermal Design 
Power (TDP) of the two platforms.  This is an overestimate 
of true power consumption for the application for both 
platforms. TDP for the Intel Stratix 10 NX FPGA is based on 
design analysis provided by Intel for a PCIe-based accelerator 
card deployment.

The number of concurrent voice channels is the maximum 
number of channels that can be generated in real time to 
meet a 16 kHz sample rate. The FPGA implementation uses 
slightly smaller layer sizes than the GPU implementation, but 
has a larger number of model parameters and operations, 
due to the inclusion of the conditional layer in the accelerated 
part of the model, which is not part of the nv-wavenet 
implementation.

The Intel Stratix 10 NX FPGA implementation demonstrates a 
8 times improvement in number of concurrent voice streams 
when compared to nv-wavenet. The FPGA is able to achieve 
a 8.6 times improvement in achieved TOPS for the WaveNet 
model.

The FPGA provides a significantly more power efficient 
solution, providing a 9.3 times improvement in voice 
channels per watt and a 10 times improvement in GOPS/W.

We present the number of concurrent voice channels for 
audio frequencies at 16 kHz and above in Table 6. This shows 
that the FPGA solution remains efficient, even as the latency 
requirement to produce a single time step is reduced.
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VI . Conclusion
This paper has shown that real-time performance can be 
achieved for 256 concurrent streams of the state-of-the-art 
WaveNet model to achieve near-human levels of synthesized 
speech by using a dedicated FPGA-based accelerator. This is 
an improvement of 8 times the best GPU solution currently 
available for this model.

We show that in higher frequency deployments, the FPGA 
advantage increases further, enabling a 10 times advantage 
at 24 kHz and 16 times advantage at 32 kHz, compared to 
the best GPU solution currently available. This enables a cost 
effective platform for deployment of WaveNet at higher audio 
frequencies, enabling 128 concurrent streams of 32 kHz 
audio on one accelerator.

We show that the FPGA is able to provide a significant energy 
reduction in the implementation ofWaveNet, a 10 times 
improvement compared to a GPU implementation, enabling 
significant energy savings to be made by those who deploy 
real-time speech synthesis at scale.

We demonstrate that the BFP16 format can be applied post 
training to enable a simple quantization flow from FP32, with 
minimal loss of accuracy. This provides a simple and effective 
quantization flow from machine learning frameworks, 
whilst enabling the benefit of a more efficient hardware 
implementation.

We implement the ConvTranspose1d on an Intel® Xeon® 
processor dual socket 16 core CPU running at 2.8 GHz. 
Each input step corresponds to 200 output steps (stride) 
and hence one input step must be processed every 
12.5 ms to generate output steps for 16 kHz audio. We 
implement our own ConvTranspose1d variant, which 
runs at an order of magnitude faster than the PyTorch 
native implementation. We use a batch size of 64 running 
independently on each socket. We measure the 99.999-ile 
latency at 3.85 ms for each batch, sufficiently fast to run 3 
batches of 64 on each socket within the 12.5 ms processing 
requirement. This configuration enables the CPU to compute 
the ConvTranspose1d for up to 384 concurrent voice 
channels, sufficient to feed the FPGA implementation, and 
demonstrating a full system implementation of WaveNet 
capable of generating 256 concurrent voice channels.

MYRTLE .AI WAVENET NV-WAVENET

Platform Intel® Stratix® 10 NX FPGA NVIDIA* V100 GPU

Frequency (MHz) 240 1530

Numerical Precision BFP16 / bfloat16 fp16

WaveNet Configuration r=120, s=240, L=16, a=256, D=8 r=128, s=256, L=16, a=256, D=8

Operations per 1 second audio (GOPS/second) 65.03 60.36

Model Parameters (Millions) 2.08 1.99

Concurrent Voice Channels 256 32

Application TOPS 16.6 1.93

TDP Power (W) 215 250

Performance per Watt (GOPS/W) 77.4 7.7

Voice Channels per Watt (1/W) 1.19 0.128

Table 5 .   Performance Results for WaveNet Implementation at 16 kHz.

AUDIO FREQUENCY
CONCURRENT VOICE CHANNELS

MYRTLE .AI WAVENET NV-WAVENET

16 kHz 256 32

24 kHz 160 16

32 kHz 128 8

Table 6 .   Performance Results for WaveNet Implementation 
for Different Audio Frequencies.
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