Artificial Intelligence with 2nd Gen Intel® Xeon® Scalable Processor

The 2nd Gen Intel® Xeon® Scalable processor provides scalable performance for the widest variety of datacenter workloads – including deep learning. The new 2nd Gen Intel® Xeon® Scalable processor platform offers built-in Return on Investment (ROI), potent performance and production-ready support for AI deployments.

In our smart and connected world, machines are increasingly learning to sense, reason, act, and adapt in the real world. Artificial Intelligence (AI) is the next big wave of computing, and Intel uniquely has the experience to fuel the AI computing era. AI will let us accelerate solutions to large-scale problems that would otherwise take months, years, or decades to resolve.

AI is expected to unleash new scientific discoveries, automate monotonous tasks and extend our human senses and capabilities. Today, machine learning (ML) and deep learning (DL) are two underlying approaches to AI, as are reasoning-based systems.

Deep learning is the most rapidly emerging branch of machine learning, in many cases supplanting classic ML, relying on massive labeled data sets to iteratively “train” many-layered neural networks inspired by the human brain. Trained neural networks are used to “infer” the meaning of new data, with increased speed and accuracy for processes like image search, speech recognition, natural language processing, and other complex tasks.

The 2nd Generation Intel® Xeon® Scalable processors take AI performance to the next level with Intel® Deep Learning Boost (Intel® DL Boost), a new set of embedded processor technologies designed to accelerate AI deep learning use cases such as image recognition, object detection, speech recognition, language translation and others. It extends Intel® Advanced Vector Extensions 512 (Intel® AVX-512) with a new Vector Neural Network Instruction (VNNI) that significantly increases deep learning inference performance over previous generations. With 2nd Gen Intel® Xeon® Platinum 8280 processors and Intel® Deep Learning Boost (Intel® DL Boost), we project that image recognition with Intel optimized Caffe ResNet-50 can perform up to 14x1 faster than on prior generation Intel® Xeon® Scalable processors (at launch, July 2017).

Performance data as of April 2, 2019.1 2 3 4

ResNet-50 performance with Intel® Optimization for Caffe*

Designed for high performance computing, advanced artificial intelligence and analytics, and high density infrastructures Intel® Xeon® Platinum 9200 processors deliver breakthrough levels of performance. Using Intel® Deep Learning Boost (Intel® DL Boost) combined with Intel optimized Caffe, new breakthrough levels of performance can be achieved. Here we show the throughput on an image classification topology – ResNet-50 on the 2nd Generation Intel® Xeon Scalable processor.

Learn more ›

Configuration Details

Max Inference throughput at <7ms

Intel® Xeon® Platinum 8280 processor: Tested by Intel as of 3/04/2019. 2S Intel® Xeon® Platinum 8280(28 cores per socket) processor, HT ON, turbo ON, Total Memory 384 GB (12 slots/ 32 GB/ 2933 MHz), BIOS: SE5C620.86B.0D.01.0348.011820191451, Centos 7 Kernel 3.10.0-957.5.1.el7.x86_64, Intel® Deep Learning Framework: Intel® Optimization for Caffe* version: https://github.com/intel/caffe Commit id: 362a3b3, ICC 2019.2.187 for build, MKL DNN version: v0.17 (commit hash: 830a10059a018cd2634d94195140cf2d8790a75a), model: https://github.com/intel/caffe/blob/master/models/intel_optimized_models/int8/resnet50_int8_full_conv.prototxt, BS=10, synthetic Data:3x224x224, 2 instance/2 socket, Datatype: INT8; latency: 6.16 ms.

Intel® Xeon® Platinum 9242 processor: Tested by Intel as of 3/04/2019 2S Intel® Xeon® Platinum 9242(48 cores per socket) processor, HT ON, turbo ON, Total Memory 768 GB (24 slots/ 32 GB/ 2933 MHz), BIOS: SE5C620.86B.0D.01.0403.022020190327, Centos 7 Kernel 3.10.0-957.5.1.el7.x86_64, Intel® Deep Learning Framework: Intel® Optimization for Caffe* version: https://github.com/intel/caffe Commit id: 362a3b3, ICC 2019.2.187 for build, MKL DNN version: v0.17 (commit hash: 830a10059a018cd2634d94195140cf2d8790a75a), model: https://github.com/intel/caffe/blob/master/models/intel_optimized_models/int8/resnet50_int8_full_conv.prototxt, BS= 8, synthetic Data:3x224x224, 4 instance/2 socket, Datatype: INT8; latency: 6.90 ms.

Intel® Xeon® Platinum 9282 processor: Tested by Intel as of 3/04/2019. DL Inference: Platform: Dragon rock 2S Intel® Xeon® Platinum 9282(56 cores per socket) processor, HT ON, turbo ON, Total Memory 768 GB (24 slots/ 32 GB/ 2933 MHz), BIOS: SE5C620.86B.0D.01.0241.112020180249, Centos 7 Kernel 3.10.0-957.5.1.el7.x86_64, Intel® Deep Learning Framework: Intel® Optimization for Caffe* version: https://github.com/intel/caffe Commit id: 362a3b3, ICC 2019.2.187 for build, MKL DNN version: v0.17 (commit hash: 830a10059a018cd2634d94195140cf2d8790a75a), model: https://github.com/intel/caffe/blob/master/models/intel_optimized_models/int8/resnet50_int8_full_conv.prototxt, BS=12, synthetic Data:3x224x224, 4 instance/2 socket, Datatype: INT8; latency: 6.91 ms.

Max Inference throughput

Intel® Xeon® Platinum 8280 processor: Tested by Intel as of 3/04/2019. 2S Intel® Xeon® Platinum 8280(28 cores per socket) processor, HT ON, turbo ON, Total Memory 384 GB (12 slots/ 32 GB/ 2933 MHz), BIOS: SE5C620.86B.0D.01.0348.011820191451, Centos 7 Kernel 3.10.0-957.5.1.el7.x86_64, Intel® Deep Learning Framework: Intel® Optimization for Caffe* version: https://github.com/intel/caffe Commit id: 362a3b3, ICC 2019.2.187 for build, MKL DNN version: v0.17 (commit hash: 830a10059a018cd2634d94195140cf2d8790a75a), model: https://github.com/intel/caffe/blob/master/models/intel_optimized_models/int8/resnet50_int8_full_conv.prototxt, BS=10, syntheticData:3x224x224, 14 instance/2 socket, Datatype: INT8.

Intel® Xeon® Platinum 9242 processor: Tested by Intel as of 3/04/2019 2S Intel® Xeon® Platinum 9242(48 cores per socket) processor, HT ON, turbo ON, Total Memory 768 GB (24 slots/ 32 GB/ 2933 MHz), BIOS: SE5C620.86B.0D.01.0403.022020190327, Centos 7 Kernel 3.10.0-957.5.1.el7.x86_64, Intel® Deep Learning Framework: Intel® Optimization for Caffe* version: https://github.com/intel/caffe Commit id: 362a3b3, ICC 2019.2.187 for build, MKL DNN version: v0.17 (commit hash: 830a10059a018cd2634d94195140cf2d8790a75a), model: https://github.com/intel/caffe/blob/master/models/intel_optimized_models/int8/resnet50_int8_full_conv.prototxt, BS=8, synthetic Data:3x224x224, 24 instance/2 socket, Datatype: INT8.

Intel® Xeon® Platinum 9282 processor: Tested by Intel as of 3/04/2019. DL Inference: Platform: Dragon rock 2S Intel® Xeon® Platinum 9282(56 cores per socket) processor, HT ON, turbo ON, Total Memory 768 GB (24 slots/ 32 GB/ 2933 MHz), BIOS: SE5C620.86B.0D.01.0241.112020180249, Centos 7 Kernel 3.10.0-957.5.1.el7.x86_64, Intel® Deep Learning Framework: Intel® Optimization for Caffe*
version: https://github.com/intel/caffe Commit id: 362a3b3, ICC 2019.2.187 for build, MKL DNN version: v0.17 (commit hash: 830a10059a018cd2634d94195140cf2d8790a75a), model: https://github.com/intel/caffe/blob/master/models/intel_optimized_models/int8/resnet50_int8_full_conv.prototxt, BS=8, synthetic Data:3x224x224, 28 instance/2 socket, Datatype: INT8.

BKMs for running multi-stream configurations on Xeon: https://www.intel.ai/wp-content/uploads/sites/69/TensorFlow_Best_Practices_Intel_Xeon_AI-HPC_v1.1_Q119.pdf

ResNet-50 Inference Throughput Performance

Inference generally happens instantaneously at the edge or in the data center, such as when a new photo is uploaded for inspection. Inference output can be fed into a number of different usages including – a dashboard for visualization or a decision tree for automatic decision making. Here we show inference throughput on an image database using multiple popular deep learning frameworks such as Caffe, TensorFlow, Pytorch and MxNet with the ResNet-50 topology.

View larger image

Learn more

Configuration Details

3.0x performance boost with MxNet on ResNet-50: Tested by Intel as of 3/1/2019. 2 socket Intel® Xeon® Platinum 8280 processor, 28 cores HT On Turbo ON Total Memory 384 GB (12 slots/ 32GB/ 2933 MHz), BIOS: SE5C620.86B.0D.01.0271.120720180605 (ucode:0x4000013),CentOS 7.6, 4.19.5-1.el7.elrepo.x86_64, Intel® Deep Learning Framework: MxNet https://github.com/apache/incubator-mxnet/ -b master da5242b732de39ad47d8ecee582f261ba5935fa9, Compiler: gcc 4.8.5,MKL DNN version: v0.17, ResNet50: https://github.com/apache/incubator-MXNet/blob/master/python/MXNet/gluon/model_zoo/vision/resnet.py, BS=64, synthetic data, 2 instance/2 socket, 0.12% accuracy loss ,Datatype: INT8 vs Tested by Intel as of 3/1/2019. 2 socket Intel® Xeon® Platinum 8180 processor, 28 cores HT On Turbo ON Total Memory 384 GB (12 slots/ 32GB/ 2633 MHz), BIOS: SE5C620.86B.0D.01.0286.121520181757, CentOS 7.6, 4.19.5-1.el7.elrepo.x86_64, Intel® Deep Learning Framework: MxNet https://github.com/apache/incubator-mxnet/ -b master da5242b732de39ad47d8ecee582f261ba5935fa9, Compiler: gcc 4.8.5,MKL DNN version: v0.17, ResNet50: https://github.com/apache/incubator-MXNet/blob/master/python/MXNet/gluon/model_zoo/vision/resnet.py, BS=64, synthetic data, 2 instance/2 socket, Datatype: FP32

3.7x performance boost with Pytorch ResNet-50: Tested by Intel as of 2/25/2019. 2 socket Intel® Xeon® Platinum 8280 processor, 28 cores HT On Turbo ON Total Memory 384 GB (12 slots/ 32GB/ 2933 MHz), BIOS: SE5C620.86B.0D.01.0271.120720180605 (ucode: 0x4000013), Ubuntu 18.04.1 LTS, kernel 4.15.0-45-generic, SSD 1x sda INTEL SSDSC2BA80 SSD 745.2GB, 3X INTEL SSDPE2KX040T7 SSD 3.7TB , Intel® Deep Learning Framework: Pytorch with ONNX/Caffe2 backend: https://github.com/pytorch/pytorch.git (commit: 4ac91b2d64eeea5ca21083831db5950dc08441d6)and Pull Request link: https://github.com/pytorch/pytorch/pull/17464 (submitted for upstreaming), gcc (Ubuntu 7.3.0-27ubuntu1~18.04) 7.3.0, MKL DNN version: v0.17.3 (commit hash: 0c3cb94999919d33e4875177fdef662bd9413dd4), ResNet-50: https://github.com/intel/optimized-models/tree/master/pytorch, BS=512, synthetic data, 2 instance/2 socket, 0.6% accuracy loss; Datatype: INT8 vs Tested by Intel as of 2/25/2019. 2 socket Intel® Xeon® Platinum 8180 processor, 28 cores HT On Turbo ON Total Memory 192 GB (12 slots/ 16GB/ 2666 MHz), BIOS: SE5C620.86B.00.01.0015.110720180833 (ucode: 0x200004d), CentOS 7.5, 3.10.0-693.el7.x86_64, Intel® SSD DC S4500 SERIES SSDSC2KB480G7 2.5’’ 6Gb/s SATA SSD 480G, Intel® Deep Learning Framework: https://github.com/pytorch/pytorch.git (commit:4ac91b2d64eeea5ca21083831db5950dc08441d6)and Pull Request link: https://github.com/pytorch/pytorch/pull/17464 (submitted for upstreaming), gcc (Red Hat 5.3.1-6) 5.3.1 20160406, MKL DNN version: v0.17.3 (commit hash: 0c3cb94999919d33e4875177fdef662bd9413dd4), ResNet-50: https://github.com/intel/optimized-models/tree/master/pytorch, BS=512, synthetic data, 2 instance/2 socket, Datatype: FP32

3.9x performance boost with TensorFlow ResNet-50:Tested by Intel as of 3/1/2019. 2 socket Intel® Xeon® Platinum 8280 processor, 28 cores HT On Turbo ON Total Memory 384 GB (12 slots/ 32GB/ 2933 MHz), BIOS: SE5C620.86B.0D.01.0271.120720180605 (ucode:0x4000013),CentOS 7.6, 4.19.5-1.el7.elrepo.x86_64, Intel® Deep Learning Framework: https://hub.docker.com/r/intelaipg/intel-optimized-tensorflow:PR25765-devel-mkl (https://github.com/tensorflow/tensorflow.git commit: 6f2eaa3b99c241a9c09c345e1029513bc4cd470a + Pull Request PR 25765, PR submitted for upstreaming) Compiler: gcc 6.3.0,MKL DNN version: v0.17, ResNet50: https://github.com/IntelAI/models/tree/master/models/image_recognition/tensorflow/resnet50, (commit: 87261e70a902513f934413f009364c4f2eed6642) BS=128, synthetic data, 2 instance/2 socket, 0.45% accuracy loss Datatype: INT8 vs Tested by Intel as of 3/1/2019. 2 socket Intel® Xeon® Platinum 8180 processor, 28 cores HT On Turbo ON Total Memory 384 GB (12 slots/ 32GB/ 2633 MHz), BIOS: SE5C620.86B.0D.01.0286.121520181757, CentOS 7.6, 4.19.5-1.el7.elrepo.x86_64, Intel® Deep Learning Framework: https://hub.docker.com/r/intelaipg/intel-optimized-tensorflow:PR25765-devel-mkl 6f2eaa3b99c241a9c09c345e1029513bc4cd470a + PR25765, PR submitted for upstreaming) Compiler: gcc 6.3.0,MKL DNN version: v0.17, ResNet50: https://github.com/IntelAI/models/tree/master/models/image_recognition/tensorflow/resnet50 , (commit: 87261e70a902513f934413f009364c4f2eed6642) BS=128, synthetic data, 2 instance/2 socket, Datatype: FP32

4.0x performance boost with Intel® Optimization for Caffe* ResNet-50: Tested by Intel as of 2/20/2019. 2 socket Intel® Xeon® Platinum 8280 processor, 28 cores HT On Turbo ON Total Memory 384 GB (12 slots/ 32GB/ 2933 MHz), BIOS: SE5C620.86B.0D.01.0271.120720180605 (ucode: 0x4000013), Ubuntu 18.04.1 LTS, kernel 4.15.0-45-generic, SSD 1x sda INTEL SSDSC2BA80 SSD 745.2GB, 3X INTEL SSDPE2KX040T7 SSD 3.7TB , Intel® Deep Learning Framework: Intel® Optimization for Caffe* version: 1.1.3 (commit hash: 7010334f159da247db3fe3a9d96a3116ca06b09a) , ICC version 18.0.1, MKL DNN version: v0.17 (commit hash: 830a10059a018cd2634d94195140cf2d8790a75a, model: https://github.com/intel/caffe/blob/master/models/intel_optimized_models/int8/resnet50_int8_full_conv.prototxt, BS=64, syntheticData, 2 instance/2 socket, Datatype: INT8 vs Tested by Intel as of 2/21/2019. 2 socket Intel® Xeon® Platinum 8180 processor, 28 cores HT On Turbo ON Total Memory 192 GB (12 slots/ 16GB/ 2666 MHz), BIOS: SE5C620.86B.00.01.0015.110720180833 (ucode: 0x200004d), CentOS 7.5, 3.10.0-693.el7.x86_64, Intel® SSD DC S4500 SERIES SSDSC2KB480G7 2.5’’ 6Gb/s SATA SSD 480G, , Intel® Deep Learning Framework: Intel® Optimization for Caffe* version: 1.1.3 (commit hash: 7010334f159da247db3fe3a9d96a3116ca06b09a) , ICC version 18.0.1, MKL DNN version: v0.17 (commit hash: 830a10059a018cd2634d94195140cf2d8790a75a, model: https://github.com/intel/caffe/blob/master/models/intel_optimized_models/benchmark/resnet_50/deploy.prototxt, BS=64, synthetic Data, 2 instance/2 socket, Datatype: FP32

Inference Throughput Performance

The 2nd Gen Intel® Xeon® Scalable processors are built specifically to run high-performance AI and IoT workloads on the same hardware as other existing workloads. Intel® Deep Learning Boost (Intel® DL Boost) can benefit many inference applications ranging from recommendation systems, Object detection and image recognition and classification. Here we show inference throughput for image classification, object detection and a recommendation system. Multiple frameworks are used including TensorFlow*, Caffe2 and MxNet* and multiple topologies such as ResNet-101, Inception v3, RETINANET*, SSD-VGG16 and Wide and Deep.

View larger image

Learn more

Configuration Details

4.0x performance boost with TensorFlow ResNet-101: Tested by Intel as of 3/1/2019. 2 socket Intel® Xeon® Platinum 8280 processor, 28 cores HT On Turbo ON Total Memory 384 GB (12 slots/ 32GB/ 2933 MHz), BIOS: SE5C620.86B.0D.01.0271.120720180605 (ucode:0x4000013),CentOS 7.6, 4.19.5-1.el7.elrepo.x86_64, Intel® Deep Learning Framework: https://hub.docker.com/r/intelaipg/intel-optimized-tensorflow:PR25765-devel-mkl (https://github.com/tensorflow/tensorflow.git commit: 6f2eaa3b99c241a9c09c345e1029513bc4cd470a + Pull Request PR 25765, PR submitted for upstreaming), Compiler: gcc 6.3.0,MKL DNN version: v0.17, ResNet 101 : https://github.com/IntelAI/models/tree/master/models/image_recognition/tensorflow/resnet101 commit: 87261e70a902513f934413f009364c4f2eed6642 , BS=128, synthetic data, 2 instance/2 socket, 0.58% accuracy loss Datatype: INT8 vs Tested by Intel as of 3/1/2019. 2 socket Intel® Xeon® Platinum 8180 processor, 28 cores HT On Turbo ON Total Memory 384 GB (12 slots/ 32GB/ 2633 MHz), BIOS: SE5C620.86B.0D.01.0286.121520181757, CentOS 7.6, 4.19.5-1.el7.elrepo.x86_64, Intel® Deep Learning Framework: https://hub.docker.com/r/intelaipg/intel-optimized-tensorflow:PR25765-devel-mkl (https://github.com/tensorflow/tensorflow.git commit: 6f2eaa3b99c241a9c09c345e1029513bc4cd470a + Pull Request PR 25765, PR submitted for upstreaming) Compiler: gcc 6.3.0,MKL DNN version: v0.17, ResNet 101 : https://github.com/IntelAI/models/tree/master/models/image_recognition/tensorflow/resnet101 commit: 87261e70a902513f934413f009364c4f2eed6642 , BS=128, synthetic data, 2 instance/2 socket, Datatype: FP32

3.8x performance boost with MxNet ResNet 101: Tested by Intel as of 3/1/2019. 2 socket Intel® Xeon® Platinum 8280 processor, 28 cores HT On Turbo ON Total Memory 384 GB (12 slots/ 32GB/ 2933 MHz), BIOS: SE5C620.86B.0D.01.0271.120720180605 (ucode:0x4000013),CentOS 7.6, 4.19.5-1.el7.elrepo.x86_64, Intel® Deep Learning Framework: MxNet https://github.com/apache/incubator-mxnet.git commit: da5242b732de39ad47d8ecee582f261ba5935fa9 , Compiler: gcc 4.8.5,MKL DNN version: v0.17, ResNet 101: https://github.com/apache/incubator-MXNet/blob/master/python/MXNet/gluon/model_zoo/vision/resnet.py ,BS= 64, Synthetic data, 2 instance/2 socket, 0.56% accuracy loss, Datatype: INT8 vs Tested by Intel as of 3/1/2019. 2 socket Intel® Xeon® Platinum 8180 processor, 28 cores HT On Turbo ON Total Memory 384 GB (12 slots/ 32GB/ 2633 MHz), BIOS: SE5C620.86B.0D.01.0286.121520181757, CentOS 7.6, 4.19.5-1.el7.elrepo.x86_64, Intel® Deep Learning Framework: MxNet: https://github.com/apache/incubator-mxnet.git commit: da5242b732de39ad47d8ecee582f261ba5935fa9, Compiler: gcc 4.8.5,MKL DNN version: v0.17, ResNet 101: https://github.com/apache/incubator-MXNet/blob/master/python/MXNet/gluon/model_zoo/vision/resnet.py ,BS= 64, synthetic Data, 2 instance/2 socket, Datatype:FP32

3.1x performance boost with TensorFlow Inception v3: Tested by Intel as of 3/1/2019. 2 socket Intel® Xeon® Platinum 8280 processor, 28 cores HT On Turbo ON Total Memory 384 GB (12 slots/ 32GB/ 2933 MHz), BIOS: SE5C620.86B.0D.01.0271.120720180605 (ucode:0x4000013),CentOS 7.6, 4.19.5-1.el7.elrepo.x86_64, Intel® Deep Learning Framework: https://hub.docker.com/r/intelaipg/intel-optimized-tensorflow:PR25765-devel-mkl (https://github.com/tensorflow/tensorflow.git commit: 6f2eaa3b99c241a9c09c345e1029513bc4cd470a + Pull Request PR 25765, PR submitted for upstreaming), Compiler: gcc 6.3.0,MKL DNN version: v0.17, Inception v3 : https://github.com/IntelAI/models/tree/master/models/image_recognition/tensorflow/inceptionv3 commit: 87261e70a902513f934413f009364c4f2eed6642 , BS=128, synthetic data, 2 instance/2 socket, Datatype: INT8 vs Tested by Intel as of 3/1/2019. 2 socket Intel® Xeon® Platinum 8180 processor, 28 cores HT On Turbo ON Total Memory 384 GB (12 slots/ 32GB/ 2633 MHz), BIOS: SE5C620.86B.0D.01.0286.121520181757, CentOS 7.6, 4.19.5-1.el7.elrepo.x86_64, Intel® Deep Learning Framework: https://hub.docker.com/r/intelaipg/intel-optimized-tensorflow:PR25765-devel-mkl (https://github.com/tensorflow/tensorflow.git commit: 6f2eaa3b99c241a9c09c345e1029513bc4cd470a + Pull Request PR 25765, PR submitted for upstreaming) Compiler: gcc 6.3.0,MKL DNN version: v0.17, Inception v3 : https://github.com/IntelAI/models/tree/master/models/image_recognition/tensorflow/inceptionv3 commit: 87261e70a902513f934413f009364c4f2eed6642 , BS=128, synthetic data, 2 instance/2 socket, Datatype: FP32

2.6x performance boost with PyTorch RetinaNet: Tested by Intel as of 3/1/2019. 2 socket Intel® Xeon® Platinum 8280 processor, 28 cores HT On Turbo ON Total Memory 384 GB (12 slots/ 32GB/ 2933 MHz), BIOS: SE5C620.86B.0D.01.0271.120720180605 (ucode: 0x4000013), Ubuntu 18.04.1 LTS, kernel 4.15.0-45-generic, SSD 1x sda INTEL SSDSC2BA80 SSD 745.2GB, 3X INTEL SSDPE2KX040T7 SSD 3.7TB , Intel® Deep Learning Framework: Pytorch with ONNX/Caffe2 backend: https://github.com/pytorch/pytorch.git (commit: 4ac91b2d64eeea5ca21083831db5950dc08441d6)and Pull Request link: https://github.com/pytorch/pytorch/pull/17464 (submitted for upstreaming), gcc (Ubuntu 7.3.0-27ubuntu1~18.04) 7.3.0, MKL DNN version: v0.17.3 (commit hash: 0c3cb94999919d33e4875177fdef662bd9413dd4), RetinaNet: https://github.com/intel/Detectron/blob/master/configs/12_2017_baselines/retinanet_R-101-FPN_1x.yaml BS=1, synthetic data, 2 instance/2 socket, 0.003mAP accuracy loss, Datatype: INT8 vs Tested by Intel as of 3/1/2019. 2 socket Intel® Xeon® Platinum 8180 processor, 28 cores HT On Turbo ON Total Memory 192 GB (12 slots/ 16GB/ 2666 MHz), BIOS: SE5C620.86B.00.01.0015.110720180833 (ucode: 0x200004d), CentOS 7.5, 3.10.0-693.el7.x86_64, Intel® SSD DC S4500 SERIES SSDSC2KB480G7 2.5’’ 6Gb/s SATA SSD 480G, Intel® Deep Learning Framework: Pytorch with ONNX/Caffe2 backend: https://github.com/pytorch/pytorch.git (commit: 4ac91b2d64eeea5ca21083831db5950dc08441d6)and Pull Request link: https://github.com/pytorch/pytorch/pull/17464 (submitted for upstreaming), gcc (Ubuntu 7.3.0-27ubuntu1~18.04) 7.3.0, MKL DNN version: v0.17.3 (commit hash: 0c3cb94999919d33e4875177fdef662bd9413dd4), RetinaNet: https://github.com/intel/Detectron/blob/master/configs/12_2017_baselines/retinanet_R-101-FPN_1x.yaml, BS=1, synthetic data, 2 instance/2 socket, Datatype: FP32

2.5x performance boost with MxNet SSD-VGG16: Tested by Intel as of 3/1/2019. 2 socket Intel® Xeon® Platinum 8280 processor, 28 cores HT On Turbo ON Total Memory 384 GB (12 slots/ 32GB/ 2933 MHz), BIOS: SE5C620.86B.0D.01.0271.120720180605 (ucode:0x4000013),CentOS 7.6, 4.19.5-1.el7.elrepo.x86_64, Intel® Deep Learning Framework: MxNet https://github.com/apache/incubator-mxnet/ -b master da5242b732de39ad47d8ecee582f261ba5935fa9, Compiler: gcc 4.8.5,MKL DNN version: v0.17, SSD-VGG16: https://github.com/apache/incubator-MXNet/blob/master/example/ssd/symbol/vgg16_reduced.py ,BS= 224, Synthetic data, 2 instance/2 socket, 0.0001 mAP accuracy loss , Datatype: INT8 vs Tested by Intel as of 3/1/2019. 2 socket Intel® Xeon® Platinum 8180 processor, 28 cores HT On Turbo ON Total Memory 384 GB (12 slots/ 32GB/ 2633 MHz), BIOS: SE5C620.86B.0D.01.0286.121520181757, CentOS 7.6, 4.19.5-1.el7.elrepo.x86_64, Intel® Deep Learning Framework: MxNet https://github.com/apache/incubator-mxnet/ -b master da5242b732de39ad47d8ecee582f261ba5935fa9, Compiler: gcc 4.8.5,MKL DNN version: v0.17, SSD-VGG16: https://github.com/apache/incubator-MXNet/blob/master/example/ssd/symbol/vgg16_reduced.py ,BS= 224, synthetic Data, 2 instance/2 socket, Datatype:FP32

2.2x performance boost with Intel® Optimized Caffe on SSD-Mobilenet v1: Tested by Intel as of 2/20/2019. 2 socket Intel® Xeon® Platinum 8280 processor, 28 cores HT On Turbo ON Total Memory 384 GB (12 slots/ 32GB/ 2933 MHz), BIOS: SE5C620.86B.0D.01.0271.120720180605 (ucode: 0x4000013), Ubuntu 18.04.1 LTS, kernel 4.15.0-45-generic, SSD 1x sda Intel® SSDSC2BA80 SSD 745.2GB, 3X INTEL SSDPE2KX040T7 SSD 3.7TB , Intel® Deep Learning Framework: Intel® Optimization for Caffe* version: 1.1.3 (commit hash: 7010334f159da247db3fe3a9d96a3116ca06b09a) , ICC version 18.0.1, MKL DNN version: v0.17 (commit hash: 830a10059a018cd2634d94195140cf2d8790a75a, model: https://github.com/intel/caffe/blob/master/models/intel_optimized_models/int8/ssd_mobilenet_int8.prototxt, BS=64, synthetic Data, 2 instance/2 socket, 0.0096 mAP accuracy loss, Datatype: INT8 vs Tested by Intel as of 2/21/2019. 2 socket Intel® Xeon® Platinum 8180 processor, 28 cores HT On Turbo ON Total Memory 192 GB (12 slots/ 16GB/ 2666 MHz), BIOS: SE5C620.86B.00.01.0015.110720180833 (ucode: 0x200004d), CentOS 7.5, 3.10.0-693.el7.x86_64, Intel® SSD DC S4500 SERIES SSDSC2KB480G7 2.5’’ 6Gb/s SATA SSD 480G, , Intel® Deep Learning Framework: Intel® Optimization for Caffe* version: 1.1.3 (commit hash: 7010334f159da247db3fe3a9d96a3116ca06b09a) , ICC version 18.0.1, MKL DNN version: v0.17 (commit hash: 830a10059a018cd2634d94195140cf2d8790a75a, model: https://github.com/intel/caffe/blob/master/models/intel_optimized_models/int8/ssd_mobilenet_int8.prototxt, BS=64, synthetic Data, 2 instance/2 socket, Datatype: FP32

2.1x performance boost with TensorFlow on Wide & Deep: Tested by Intel as of 3/1/2019. 2 socket Intel® Xeon® Platinum 8280 processor, 28 cores HT On Turbo ON Total Memory 384 GB (12 slots/ 32GB/ 2933 MHz), BIOS: SE5C620.86B.0D.01.0271.120720180605 (ucode:0x4000013),CentOS 7.6, 4.19.5-1.el7.elrepo.x86_64, Intel® Deep Learning Framework: https://github.com/tensorflow/tensorflow.git 3262818d9d8f9f630f04df23033032d39a7a413 + Pull Request PR26169 + Pull Request PR26261 + Pull Request PR26271 , PR submitted for upstreaming, Compiler:gcc 6.3.1,MKL DNN version: v0.17, Wide & Deep: https://github.com/IntelAI/models/tree/master/benchmarks/recommendation/tensorflow/wide_deep_large_ds commit: a044cb3e7d2b082aebae2edbe6435e57a2cc1f8f ,BS=512, Criteo Display Advertisement Challenge, 2 instance/2 socket, 0.007% accuracy loss, Datatype: INT8 vs Tested by Intel as of 3/1/2019. 2 socket Intel® Xeon® Platinum 8180 processor, 28 cores HT On Turbo ON Total Memory 384 GB (12 slots/ 32GB/ 2633 MHz), BIOS: SE5C620.86B.0D.01.0286.121520181757, CentOS 7.6, 4.19.5-1.el7.elrepo.x86_64, Intel® Deep Learning Framework: https://github.com/tensorflow/tensorflow.git 3262818d9d8f9f630f04df23033032d39a7a413 + Pull Request PR26169 + Pull Request PR26261 + Pull Request PR26271 , PR submitted for upstreaming, Compiler:gcc 6.3.1,MKL DNN version: v0.17, Wide & Deep:https://github.com/IntelAI/models/tree/master/benchmarks/recommendation/tensorflow/wide_deep_large_ds a044cb3e7d2b082aebae2edbe6435e57a2cc1f8f, BS= 512, Criteo Display Advertisement Challenge, 2 instance/2 socket,Datatype:FP32

2.1x performance boost with MXNet Wide & Deep: Tested by Intel as of 3/1/2019. 2 socket Intel® Xeon® Platinum 8280L processor, 28 cores HT On Turbo ON Total Memory 384 GB (12 slots/ 32GB/ 2933 MHz), BIOS: SE5C620.86B.0D.01.0348.011820191451 (ucode:0x5000017), CentOS 7.6, Kernel 4.19.5-1.el7.elrepo.x86_64, SSD 1x INTEL SSDSC2KG96 960GB, Intel® Deep Learning Framework: MXNet https://github.com/apache/incubator-mxnet.git commit f1de8e51999ce3acaa95538d21a91fe43a0286ec applying https://github.com/intel/optimized-models/blob/v1.0.2/mxnet/wide_deep_criteo/patch.diff, Compiler: gcc 6.3.1, MKL DNN version: commit: 08bd90cca77683dd5d1c98068cea8b92ed05784, Wide & Deep: https://github.com/intel/optimized-models/tree/v1.0.2/mxnet/wide_deep_criteo commit: c3e7cbde4209c3657ecb6c9a142f71c3672654a5, Dataset: Criteo Display Advertisement Challenge, Batch Size=1024, 2 instance/2 socket, 0.23% accuracy loss, Datatype: INT8 vs Tested by Intel as of 3/1/2019. 2 socket Intel® Xeon® Platinum 8180 processor, 28 cores HT On Turbo ON Total Memory 384 GB (12 slots/ 32GB/ 2666 MHz), BIOS: SE5C620.86B.0D.01.0286.121520181757 (ucode:0x2000057), CentOS 7.6, Kernel 4.19.5-1.el7.elrepo.x86_64, SSD 1x INTEL SSDSC2KG96 960GB, Intel® Deep Learning Framework: MXNet https://github.com/apache/incubator-mxnet.git commit f1de8e51999ce3acaa95538d21a91fe43a0286ec applying https://github.com/intel/optimized-models/blob/v1.0.2/mxnet/wide_deep_criteo/patch.diff, Compiler: gcc 6.3.1, MKL DNN version: commit: 08bd90cca77683dd5d1c98068cea8b92ed05784, Wide & Deep: https://github.com/intel/optimized-models/tree/v1.0.2/mxnet/wide_deep_criteo commit: c3e7cbde4209c3657ecb6c9a142f71c3672654a5, Dataset: Criteo Display Advertisement Challenge, Batch Size=1024, 2 instance/2 socket, Datatype:FP32

OpenVINO™ Toolkit5 Inference Throughput Performance

AI at the edge is opening up new possibilities in every industry, from predicting machine failures to personalizing retail. With the OpenVINO™ toolkit, businesses can take advantage of near real-time insights to help make better decisions, faster. The OpenVINO™ toolkit allows your business to implement computer vision and deep learning solutions quickly and effectively across multiple applications.

View larger image

Learn more

Configuration Details

2.4x performance boost with OpenVINO™ toolkit on SqueezeNet v1.1: Tested by Intel as of 1/30/2019. 2 socket Intel® Xeon® Platinum 8280 processor, 28 cores HT On Turbo ON Total Memory 384 GB (12 slots/ 32GB/ 2933 MHz), BIOS: SE5C620.86B.0D.01.0271.120720180605 (ucode:0x4000013), Linux-4.15.0-43-generic-x86_64-with-debian-buster-sid, Compiler: gcc (Ubuntu 7.3.0-27ubuntu1~18.04) 7.3.0, Deep Learning Deployment Toolkit (DLDT): OpenVINO™ toolkit R5.01, SqueezeNet v1.1: https://github.com/opencv/open_model_zoo/blob/master/model_downloader/list_topologies.yml, BS=64, Imagenet, 1 instance/2 socket, Datatype: INT8 vs Tested by Intel as of 1/30/2019. 2 socket Intel® Xeon® Platinum 8180 processor, 28 cores HT On Turbo ON Total Memory 192 GB (12 slots/ 16GB/ 2633 MHz), BIOS: SE5C620.86B.0D.01.0271.120720180605, Linux-4.15.0-29-generic-x86_64-with-Ubuntu-18.04-bionic, Compiler: gcc (Ubuntu 7.3.0-27ubuntu1~18.04) 7.3.0, Deep Learning Deployment Toolkit (DLDT): OpenVINO™ toolkit R5 (DLDTK Version:1.0.19154), SqueezeNet v1.1: https://github.com/opencv/open_model_zoo/blob/master/model_downloader/list_topologies.yml ,Imagenet images , 1 instance/2 socket, Datatype: FP32 (BS=16)

3.1x performance boost with OpenVino™ toolkit on MobileNet v1: Tested by Intel as of 1/30/2019. 2 socket Intel® Xeon® Platinum 8280 processor, 28 cores HT On Turbo ON Total Memory 384 GB (12 slots/ 32GB/ 2933 MHz), BIOS: SE5C620.86B.0D.01.0271.120720180605 (ucode:0x4000013), Linux-4.15.0-43-generic-x86_64-with-debian-buster-sid, Compiler: gcc (Ubuntu 7.3.0-27ubuntu1~18.04) 7.3.0, Deep Learning Deployment Toolkit (DLDT): OpenVINO™ toolkit R5.01, MobileNet v1: https://github.com/opencv/open_model_zoo/blob/master/model_downloader/list_topologies.yml, BS=64, Imagenet, 1 instance/2 socket, Datatype: INT8 vs Tested by Intel as of 1/30/2019. 2 socket Intel® Xeon® Platinum 8180 processor, 28 cores HT On Turbo ON Total Memory 192 GB (12 slots/ 16GB/ 2633 MHz), BIOS: SE5C620.86B.0D.01.0271.120720180605, Linux-4.15.0-29-generic-x86_64-with-Ubuntu-18.04-bionic, Compiler: gcc (Ubuntu 7.3.0-27ubuntu1~18.04) 7.3.0, Deep Learning Deployment Toolkit (DLDT): OpenVINO™ toolkit R5 (DLDTK Version:1.0.19154), MobileNet v1: https://github.com/opencv/open_model_zoo/blob/master/model_downloader/list_topologies.yml, Imagenet, 1 instance/2 socket, Datatype: FP32 (BS=16)

3.2x performance boost with OpenVINO™ toolkit on Inception v4 :Tested by Intel as of 1/30/2019. 2 socket Intel® Xeon® Platinum 8280 processor, 28 cores HT On Turbo ON Total Memory 384 GB (12 slots/ 32GB/ 2933 MHz), BIOS: SE5C620.86B.0D.01.0271.120720180605 (ucode:0x4000013), Linux-4.15.0-43-generic-x86_64-with-debian-buster-sid, Compiler: gcc (Ubuntu 7.3.0-27ubuntu1~18.04) 7.3.0, Deep Learning Deployment Toolkit (DLDT): OpenVINO™ toolkit R5.01, Inception v4: https://github.com/opencv/open_model_zoo/blob/master/model_downloader/list_topologies.yml, BS=128, Imagenet, 1 instance/2 socket, Datatype: INT8 vs Tested by Intel as of 1/30/2019. 2 socket Intel® Xeon® Platinum 8180 processor, 28 cores HT On Turbo ON Total Memory 192 GB (12 slots/ 16GB/ 2633 MHz), BIOS: SE5C620.86B.0D.01.0271.120720180605, Linux-4.15.0-29-generic-x86_64-with-Ubuntu-18.04-bionic, Compiler: gcc (Ubuntu 7.3.0-27ubuntu1~18.04) 7.3.0, Deep Learning Deployment Toolkit (DLDT): OpenVINO™ toolkit R5 (DLDTK Version:1.0.19154), Inception v4: https://github.com/opencv/open_model_zoo/blob/master/model_downloader/list_topologies.yml Imagenet, 1 instance/2 socket, Datatype: FP32 (BS=16)

3.9x performance boost with OpenVINO™ toolkit ResNet-50: Tested by Intel as of 1/30/2019. 2 socket Intel® Xeon® Platinum 8280 processor, 28 cores HT On Turbo ON Total Memory 384 GB (12 slots/ 32GB/ 2933 MHz), BIOS: SE5C620.86B.0D.01.0271.120720180605 (ucode:0x4000013), Linux-4.15.0-43-generic-x86_64-with-debian-buster-sid, Compiler: gcc (Ubuntu 7.3.0-27ubuntu1~18.04) 7.3.0, Deep Learning Deployment Toolkit (DLDT): OpenVINO™ toolkit R5 (DLDTK Version:1.0.19154 , AIXPRT CP (Community Preview) benchmark (https://www.principledtechnologies.com/benchmarkxprt/aixprt/) BS=64, Imagenet images, 1 instance/2 socket, Datatype: INT8 vs Tested by Intel as of 1/30/2019. 2 socket Intel® Xeon® Platinum 8180 processor, 28 cores HT On Turbo ON Total Memory 192 GB (12 slots/ 16GB/ 2633 MHz), BIOS: SE5C620.86B.0D.01.0271.120720180605, Linux-4.15.0-29-generic-x86_64-with-Ubuntu-18.04-bionic, Compiler: gcc (Ubuntu 7.3.0-27ubuntu1~18.04) 7.3.0, Deep Learning Deployment Toolkit (DLDT): OpenVINO™ toolkit R5 (DLDTK Version:1.0.19154), AIXPRT CP (Community Preview) benchmark (https://www.principledtechnologies.com/benchmarkxprt/aixprt/) BS=64, Imagenet images, 1 instance/2 socket, Datatype: FP32

Infos sur le produit et ses performances

1

Amélioration multipliée par 30 du débit d'inférence sur le processeur Intel® Xeon® Platinum 9282 avec la technologie Intel® Deep Learning Boost (Intel® DL Boost) : test réalisé par Intel le 26 février 2019. Plate-forme : processeur Intel® Xeon® Platinum 9282 2 sockets Dragon rock (56 cœurs par socket), technologie Hyper Threading ACTIVÉE, technologie Turbo ACTIVÉE, 768 Go de mémoire totale (24 emplacements / 32 Go / 2 933 MHz), BIOS : SE5C620.86B.0D.01.0241.112020180249, noyau CentOS 7 3.10.0-957.5.1.el7.x86_64, structure de Deep Learning : optimisation Intel® pour version Caffe* : https://github.com/intel/caffe d554cbf1, ICC 2019.2.187, MKL DNN version : v0.17 (hachage de validation : 830a10059a018cd2634d94195140cf2d8790a75a), modèle : https://github.com/intel/caffe/blob/master/models/intel_optimized_models/int8/resnet50_int8_full_conv.prototxt, BS=64, Aucune couche de données syntheticData : 3x224x224, 56 instances/2 sockets, type de données : INT8 ; vs. Testé par Intel en date du 11 juillet 2017 : processeur Intel® Xeon® Platinum 8180 2 sockets à 2,50 GHz (28 cœurs), technologie Hyper Threading désactivée, technologie turbo désactivée, mode d'échelonnage réglé sur « performances » via le pilote intel_pstate, RAM ECC DDR4-2666 384 Go. CentOS Linux* version 7.3.1611 (Core), noyau Linux* 3.10.0-514.10.2.el7.x86_64. Unité de stockage SSD Intel® série S3700 pour les centres de données (800 Go, 2,5 pouces, SATA 6 Gbit/s, 25 nm, MLC). Performances mesurées avec les variables environnementales : KMP_AFFINITY='granularity=fine, compact‘, OMP_NUM_THREADS=56, fréquence du processeur réglée avec les performances cpupower frequency-set -d 2.5G -u 3.8G -g. Caffe : (http://github.com/intel/caffe/), révision f96b759f71b2281835f690af267158b82b150b5c. Inférence mesurée avec la commande « caffe time --forward_only », formation mesurée avec la commande « caffe time ». Un ensemble de données synthétique a été utilisé pour les topologies « ConvNet ». Pour les autres topologies, les données ont été stockées localement et mises en mémoire avant la formation. Spécifications des topologies sur https://github.com/intel/caffe/tree/master/models/intel_optimized_models(ResNet-50). Compilateur C++ Intel® ver. 17.0.2 20170213, Intel® Math Kernel Library (Intel® MKL) small libraries version 2018.0.20170425. Caffe exécuté avec « numactl -l ».

2

Les résultats de performance s'appuient sur les tests réalisés aux dates indiquées dans les configurations et peuvent ne pas refléter toutes les mises à jour de sécurité disponibles. Pour obtenir plus de détails, veuillez lire les informations de configuration. Aucun produit ou composant ne saurait être totalement sécurisé en toutes circonstances.

3

Il est possible que les logiciels et charges de travail utilisés dans les tests de performance aient été optimisés uniquement pour les microprocesseurs Intel®. Les tests de performance tels que SYSmark* et MobileMark* portent sur des configurations, composants, logiciels, opérations et fonctions spécifiques. Les résultats peuvent varier en fonction de ces facteurs. Pour l'évaluation complète d'un produit, il convient de consulter d'autres tests et d'autres sources d'informations, notamment pour connaître le comportement de ce produit lorsqu'il est associé à d'autres composants. Pour plus d'informations, rendez-vous sur www.intel.com/benchmarks.

4

Avis sur l'optimisation : les compilateurs d'Intel peuvent optimiser ou non au même degré les microprocesseurs non Intel pour les optimisations qui ne sont pas uniques aux microprocesseurs Intel®. Ces optimisations comprennent les jeux d'instructions Intel® Streaming SIMD Extensions 2 (Intel® SSE2), Intel® SSE3, et Supplemental Streaming SIMD Extensions 3 (SSSE3) et d'autres optimisations. Intel ne fournit aucune garantie quant à la disponibilité, la fonctionnalité ou l'efficacité des optimisations sur des microprocesseurs d'autres fabricants. Dans ce produit, les optimisations dépendantes du processeur sont conçues pour les processeurs Intel. Certaines optimisations non spécifiques à la microarchitecture Intel® sont réservées aux microprocesseurs Intel. Reportez-vous au guide de l'utilisateur et au guide de référence applicable pour obtenir davantage d'informations concernant les jeux d'instructions spécifiques couverts par cet avis. Avis révision nº 20110804.

5

OpenVINO et le logo OpenVINO sont des marques commerciales d'Intel Corporation ou de ses filiales aux États-Unis et/ou dans d'autres pays.