How to Build a Gaming PC

Assembling your own PC will supercharge your gaming experience and allow you to upgrade components at any time.

Separating the gaming PC building process into manageable steps makes it much less intimidating. Even if you’re a novice, fret not: No prior build experience is required.1 2 3

Building a gaming PC from scratch is the only sure-fire way to ensure that your system is capable of satisfying all of your personal preferences. When you determine everything that goes into your PC from the power supply up, you know that you'll be able to play the games you want at the frame rates you want. In addition, a home-built PC keeps the door open for upgrades — as technology changes, as your gaming tastes and needs change, or as your budget allows.

Though building a PC can seem intimidating, you might find that it’s easier than you think, especially when broken into manageable steps. That's why we've put together this comprehensive step-by-step guide to building your first gaming PC, complete with tips and tricks from our veteran builders.

See if a pre-built vs. custom pc is right for you ›

PREP 1: PC Build Tools

The first thing you need to do to prepare is gather the tools you need to complete the build. Preparing the materials below ahead of time goes a long way to ensure that the build process goes smoothly.

  • Workspace. You will need a large surface to work on, such as a table. To prevent an accidental electrostatic discharge (which can damage sensitive components), make sure you stand on an uncarpeted surface.
  • Screwdrivers. You will need a Phillips #2 screwdriver for just about everything. If you're installing an M.2 device, you'll also need a Phillips #0 screwdriver.

Pro-tip: Magnetic screwdrivers will prevent you from dropping screws inside your case (the magnetic tip is very weak and shouldn't have any effect on your components).

  • Organization system. Most components come with additional parts; some optional, some required for installation in your build. You'll need a way to keep assorted screws, zip ties, cables, manuals, etc. organized by individual components. Without proper organization, these items can easily get mixed up.

Pro-tip: For assorted screws, we recommend magnetic hardware trays or trays with multiple small compartments such as empty egg cartons or vitamin containers.

  • Multiple light sources. Build in a well-lit area with multiple light sources. You don't want to have to worry about blocking your only light source when you bend over the chassis. Pro-tip: A movable light source will help you illuminate the nooks and crannies of your case. The ideal option is a headlamp, because it leaves your hands free, but you can also use a flashlight, your phone, or a desk lamp.
  • Anti-static wrist-strap. This isn’t strictly necessary, but it’s useful in ensuring you don't accidentally damage sensitive components with electrostatic discharge. (Though this isn't a very common occurrence, it’s better to be safe, and anti-static straps are cheap.)
  • Zip ties. While these aren’t a must, tying your cables together will make the inside of your PC look much better. If you don't want to buy zip ties, you can tidy things up with twist ties (you'll likely have a surplus from your components' packaging). You can also use Velcro straps — some cases even have them integrated.
  • Scissors. Lastly, you’ll need scissors for cutting zip ties and unpacking components.

PREP 2: Gaming PC Cases

Before you start picking out components, you should have a case — or, at least, a case size — in mind.

The main thing to keep in mind when picking a case is where you're going to put the computer. Your PC's final location will dictate how big you can (or cannot) go, and it will also help determine whether various premium case features are worth splurging on. You probably don't want to pay for a tempered glass side panel if the computer will be hidden under your desk, for example.

Cases typically come in three sizes: Full-tower, mid-tower, and mini-tower. These are very general categories (case sizes are not standardized among manufacturers), but they're based on motherboard size.

Full-tower cases

Full-tower cases are designed to fit both Extended-ATX motherboards and standard full-size ATX motherboards. They usually measure around 22-24 inches tall, 18-20 inches long, and more than 8 inches wide.

You'll most likely want a full-tower case if you want to use an Extended-ATX motherboard (although select mid-tower cases do fit Extended-ATX motherboards) or if you want to put in an extensive cooling system or additional storage. Though full-tower cases can also house Mini-ITX motherboards, there’s no clear advantage to structuring a build in that way.

Mid-tower cases

Mid-tower cases are designed to fit standard full-size ATX motherboards. Generally speaking, mid-tower is the most common case size. Their dimensions can vary quite a bit, but these cases usually measure around 18-20 inches tall, 17-20 inches long, and 6-8 inches wide.

These cases are usually roomy enough for a gaming setup with a couple of graphics cards, several hard drives, and a modest cooling system.

Mini-tower cases

Mini-tower cases, or small form factor (SFF) builds, are compact and designed to fit a number of smaller motherboards, such as mini-ITX motherboards.

While SFF builds have come a long way in the last few generations, mini-towers — specifically those using mini-ITX motherboards — require you to carefully plan components (you may need to use components that are specifically made for small builds, such as half-length GPUs) and cooling, leaving little room for upgrading once the build is finished.

For this reason, we don't advocate SFF builds for new builders, but they can be a fun challenge if you already have a build or two under your belt.

Once you figure out how big you want to go, look for a case that's close to that size. If you're not set on a specific size, it's better to err on the larger side. You’ll likely find that it’s easier to work with a bigger case and will have a smoother time upgrading your PC in the future.

That said, while a little bigger is good, significantly bigger isn't necessarily better: Large cases can end up with hotspots if not properly cooled.

All case sizes are available at different price points, so finding a case that fits your budget shouldn't be difficult. More expensive cases may have premium and convenience features such as noise dampening, higher-quality build materials, removable drive cages, and more attractive cable management, but these features typically won't noticeably affect performance.

PREP 3: Gaming PC Parts

Now it's time to get your components together. This step can be as hands-on or as hands-off as you like; you can thoroughly research each individual component on your own and create a custom build from scratch, or you can find a pre-made build online and adjust it to suit your specific budget and needs. 

We definitely recommend coming up with a budget before you start picking components (it's easy for component shopping to get out of hand). Remember, you can always upgrade individual components later.

Pro-tip: Make a build list before you make any purchases — all components need to be compatible with all other components.

Pro-tip: If you're building this PC because you want to play a certain game, check that game's recommended system requirements and plan accordingly.

In addition to your case, here are the components you need to build a gaming PC:

  • Central processing unit (CPU)
  • Motherboard
  • Memory (RAM)
  • Graphics processing unit (GPU)
  • Storage
  • Power supply unit (PSU)
  • System cooling
  • System cooling
  • Gaming peripherals
  • Operating system(OS)

Let's take a look at what each component does, why it's necessary, and what you need to look for while shopping around.

Central Processing Unit (CPU)

The Central Processing Unit (CPU), also known as the processor, is basically the brain of your PC. This is where the magic happens — when a computer program runs, it sends a list of instructions (which are actually more like tasks) to the CPU. The CPU performs each "instruction" and sends signals to other components to let them know when they need to perform a task.

There are two main performance metrics that can help you choose the right CPU for your needs: Core count and clock speed.

Core count tells us how many processors the CPU has — in other words, how many tasks the CPU can perform simultaneously.

Clock speed tells us how quickly the CPU is performing each task.

Some higher-end CPUs feature hyper-threading, which allows each core to run multiple threads and offers improved performance on threaded software.

Pro-tip: Most modern CPUs are multi-core and many modern games are designed to take advantage of this, so you should look for a CPU with at least four cores. Additional cores can be helpful as you start layering on more tasks, such as recording and streaming your gameplay.

Motherboard

The motherboard is the main circuit board and is connected to everything. The CPU sits directly on the motherboard (your CPU and motherboard must be compatible — Intel® Desktop Compatibility Tool can help) and every other component — graphics cards, hard drives, memory, optical drives, wireless cards — integrates into the motherboard.

One way to narrow down your selection of a motherboard is to shop by size. The most common form factors are Extended ATX, ATX, microATX, and Mini-ITX.

  • Extended ATX motherboards are the largest (12 by 13 inches or 12 by 10.1 inches) and can often have eight RAM slots (for up to 128GB of RAM).
  • ATX motherboards are only slightly smaller (12 by 9.6 inches) and usually top out at four RAM slots.
  • MicroATX motherboards (9.6 by 9.6 inches) can also have up to four RAM slots.
  • Mini-ITX motherboards sport the smallest form factor of the four (6.7 by 6.7 inches) and often have two RAM slots.

Pro-tip: Every component needs to plug into the motherboard, so pick a motherboard that's large enough to fit current and future hardware.

Memory (RAM)

Random Access Memory (RAM) is your PC's short-term memory. It's faster and easier to access than your PC's long-term memory (storage, e.g. an SSD or hard drive), but it's also temporary.

This is where the PC stores data that it is actively using (those "instruction lists" that the CPU needs to read and execute). Figuring out how much RAM you need can be tricky because having more RAM than you use will do nothing (except waste money) while having too little RAM will negatively affect performance.

Ideally, you want the perfect amount of RAM for you/your build. Generally speaking, however, the average gaming rig needs 8-16GB of RAM.

The most important thing to keep in mind when shopping for RAM is what your motherboard and processor can support. RAM that's faster than what your system supports will downclock to run at your system's capabilities.

For a more comprehensive guide to purchasing RAM for your system, check out our RAM guide.

Pro-tip: If you decide to go with high-speed RAM, look for RAM with Intel® Extreme Memory Profile (Intel® XMP) support. High-speed RAM will run at a standard (lower-than-advertised) speed unless it's overclocked, and Intel® Extreme Memory Profile (Intel® XMP) makes this easy to do with predefined and tested profiles.

Graphics Processing Unit (GPU)

There are two types of graphics processors: Integrated and discrete.

Integrated graphics processors are integrated with the CPU. Integrated graphics have improved significantly throughout the years, though they are still generally less powerful than discrete graphics.

Discrete graphics cards are large, powerful components that plug into the motherboard via PCIe*, and come with their own resources, including video memory and (usually) an active cooling system. A discrete graphics card is a must-have for gamers who play any of today's demanding, graphics-heavy games. Serious gamers will want to look for graphics cards that produce consistent frame rates of at least 60 frames per second (FPS) at your desired resolution (anything lower may look choppy), while gamers looking to play in virtual reality should look for cards that produce consistent frame rates of at least 90 fps.

Pro-tip: The GPU isn't the only component that affects frame rate, so it's important to balance out your build or you'll run into performance bottlenecks elsewhere.

Pro-tip: High-end graphics cards are expensive. If you need to cut costs, look to the last generation — the previous generation's GPU may offer similar results at a lower price point.

Storage: Solid-State Drives (SSDs, Including Intel® Optane™ Memory), Hard Disk Drives (HDDs)

There are two main types of storage: Solid-state drives (SSDs, including Intel® Optane™ Memory) and hard disk drives (HDDs). There are pros and cons to choosing either an SSD or HDD, though the good news is that you don't have to choose just one.

HDDs store data on a spinning platter. These platters use magnetic material to store data, which is subsequently retrieved with the use of a mechanical arm.

HDDs come in two form factors:

  • 2.5 inches, which are more common in laptops and usually spin at a rate of 5400 RPM (revolutions per minute)
  • 3.5 inches, which are more common in desktops and spin at faster rates, often upwards of 7200 RPM

SSDs use NAND-based flash memory — similar to, but faster and more reliable than the flash memory used in a USB flash drive — to store data. In lieu of a mechanical arm, they use integrated processors to access stored data, making them much faster and less prone to mechanical failure than HDDs. The speed and convenience of SSDs come at a cost, however; SSDs are more expensive per gigabyte than HDDs.

Modern SSDs come in two protocols:

  • Serial Advanced Technology Attachment (SATA), which is the older protocol of the two and operates with higher latency and lower peak bandwidth
  • Non-Volatile Memory Express* (NVMe*), which uses the PCI Express* interface to achieve higher performance

In addition to traditional SSDs and HDDs, there's also an option that helps bridge the speed gap: Intel® Optane™ memory storage acceleration. Intel® Optane™ memory uses 3D Xpoint memory technology to accelerate slower drives (primarily HDDs) by storing frequently used data and access patterns. Intel® Optane™ memory learns which games you use most often and uses that data to boost game launch and level load times.

Pro-tip: You don't have to pick one. Many people use a small SSD as a boot drive (for the operating system, games, and other programs) and fill the rest of their bays with cheap HDDs for maximum storage capacity.

Power Supply Unit (PSU)

Selecting a power supply unit (PSU) is a critical step in any build. The PSU needs to be well-made and powerful enough to handle all current and future components, and it doesn't hurt to have a warranty.

PSUs come in non-modular, semi-modular, and full-modular styles.

  • Non-modular PSUs have all cables permanently attached. This is the cheapest option, but you'll need to find a place to store all the cables that you know you’re not going to use. Too many unused cables result in poor cable management, which can obstruct airflow and end up affecting your PC's performance.
  • Semi-modular PSUs are the best option for most people. These units come with a handful of essential cables attached and are cheaper than full-modular styles.
  • Full-modular PSUs are even easier to work with than semi-modular PSUs, but the added convenience usually comes shouldered with a higher cost.

System Cooling - CPU Cooling and Chassis Airflow

There are two main ways to cool your PC: Air cooling and liquid cooling.

Air cooling uses fans to funnel hot air through your system and away from components to prevent overheating. The main benefits of air cooling are cost and ease-of-installation (fans are smaller and easier to fit inside a crowded chassis). The biggest drawback to air cooling is its limitations: Air cooling depends on efficient airflow inside the case to move hot air away from components, so any airflow restriction can be problematic.

Liquid cooling uses a liquid coolant (such as distilled water) to soak up heat from components and move it to an area that's less restricted (where the radiator is placed). Liquid cooling is less dependent on airflow inside the chassis, and therefore more efficient at cooling specific components. The downside to liquid cooling is that liquid cooling systems are contained, which means they're usually larger and more difficult to install than a typical air-cooled setup (they're also more expensive).

In addition to general system cooling, you'll also need to purchase a dedicated CPU cooler. CPU coolers come in both air and liquid form factors and mount directly onto your CPU. When shopping for a CPU cooler, it's important to make sure it's compatible with your CPU and sized to fit your build.

Pro-tip: In an air-cooled system, more fans does not necessarily mean better cooling. Fan quality and placement make a difference.

Peripherals

Monitors, keyboards, mice, headphones, and other peripherals mostly come down to personal preference. You don't need to purchase these items with your components, but you will need a display, a keyboard, and a mouse to set up your system after you build it.

Pro-tip: Keep build balance in mind when picking peripherals — if you've got the best components in the world but you're still using a 1080p, 60Hz monitor, you won't be taking full advantage of your hardware.

Operating system (OS)

Last but not least, you’ll need to prepare to install an operating system once all the other components have been assembled in the case. An operating system is a critical piece of software that assists in managing communications between a computer’s hardware and programs.

To prepare your PC’s OS ahead of time, determine which OS you want to install on your PC and download the installer on a USB flash drive. You can download the installer for Windows 10 here. If you are installing a paid OS such as Windows, you will need a product key.

STEP 1: INSTALL CPU

Parts/tools: Motherboard, CPU

Take the motherboard out of its antistatic packaging and put it on your work surface. Find the CPU socket, which will be covered with a protective plastic cap. In one corner of the plastic cap, or more commonly, on the socket itself, you'll see a small arrow — take note of where this arrow is.

Next to the CPU socket, you'll see a small metal lever. Press down on the lever and pull it gently to the side (away from the socket) to open the socket tray.

Open the CPU and remove it from its packaging. Be very careful when handling the CPU — both the CPU and the CPU socket are extremely susceptible to physical damage. Hold the CPU on the edges — never touch the pins on the bottom of the chip, because your fingers can add dust or oil, and try not to touch the top of the chip either.

In one corner of the CPU, you'll see an arrow. Line this arrow up with the arrow on the socket, and gently place the CPU onto the socket. Once the CPU has been gently seated, you can lower the retention lever down and push it back into place. Lowering the lever may require some force, but seating the CPU will not!

Pro-tip: You do not need to remove the plastic cap — when you install the CPU, the tension of the installation will cause the cap to pop off. If you try to remove the cap yourself, you could end up hitting and damaging the fragile pins underneath.

Pro-tip: The CPU only fits one way, and does not require any force to be seated. You can gently move the CPU to seat it, but do not jostle, push, snap, or otherwise try to force the CPU into the socket.

STEP 2: (OPTIONAL) INSTALL M.2 SSDs

Parts/tools: Motherboard, M.2 SSD, Phillips #0 screwdriver, motherboard user manual

If you want to install an M.2 SSD, now is a good time to do so. First, find the M.2 slot on your motherboard. It's a small, horizontal slot with a tiny screw across from it. If you can't find it, if you find multiple M.2 slots, or if you are planning on installing more than one M.2 SSD, consult the user manual that came with your motherboard.

Remove the tiny screw with a Phillips #0 screwdriver. Don't lose it.

Slide the M.2 SSD gently into the slot. When it's fully seated, it will stand off the motherboard about a 35-degree angle. Push the SSD down and replace the tiny screw to lock it in place.

Pro-tip: Installing a M.2 SSD may limit other storage configurations (especially SATA-based and PCIe* AIC storage), so consult your motherboard's user manual while planning storage.

Troubleshooting: If your motherboard doesn't recognize this newly-installed M.2 SSD as storage, you may need to manually configure it in BIOS (consult your motherboard's user manual for BIOS instructions).

STEP 3: INSTALL CPU COOLING

Parts/tools: Motherboard with installed CPU, CPU cooler, thermal paste, CPU cooler manual

There are different types of CPU coolers. For exact installation instructions, we recommend you consult the manual that came with your CPU cooler.

Some coolers require a mounting bracket. The motherboard may have a bracket pre-installed; you may need to remove this bracket if your cooler doesn't need a bracket, or replace this bracket if your cooler uses a different bracket. Do this before putting the motherboard inside the case.

Some coolers come with thermal paste pre-applied to the conductive material (which sits on the CPU) and some coolers do not. If your cooler does not have pre-applied thermal paste, you will need to manually apply thermal paste before you seat the cooler. To apply thermal paste, squeeze a small dot (no larger than a grain of rice) onto the middle of the CPU. Then, place the cooler on the CPU — the pressure will spread the thermal paste adequately.

Pro-tip: The first squeeze of thermal paste should be onto a piece of scrap paper, just in case a big glob accidentally comes out.

Pro-tip: If your cooler has pre-applied thermal paste and you want to use a different thermal paste, you can remove the thermal paste with 90% isopropyl alcohol and a lint-free cloth — we recommend an automotive-grade paper towel.

Pro-tip: When attaching the cooler to the motherboard, tighten the screws in a cross pattern to ensure evenly-distributed pressure. If you get confused, this process will likely be described in detail in your manual.

Troubleshooting: If you mess up the installation, don't panic. Clean off the thermal paste (from both the CPU heat spreader and the cooler) and re-apply, then install again.

STEP 4: INSTALL MEMORY (RAM)

Parts/tools: Motherboard, RAM, motherboard user manual

Determine how many RAM slots your motherboard has (most have either two or four). If you're going to fill all available RAM slots, simply snap the RAM into place. If you're not going to fill all of the RAM slots, consult the user manual to find the correct configuration and populate the RAM slots accordingly.

Pro-tip: The notch between the gold fingers is not centered. Make sure you're aligning the RAM correctly using this notch to determine which side is up versus down.

Troubleshooting: While RAM is relatively easy to snap into place, it doesn't always snap in perfectly the first time. If you try to turn your PC on and it doesn't turn on, the first thing you should do is re-seat the RAM. Some motherboards have a captive tab (one you don't have to move) that helps with installation. All motherboards have at least one tab that does move — usually, it will snap into place and attach onto an indent on the side of the RAM.

STEP 5: (OPTIONAL) DO A TEST RUN OUTSIDE THE CASE

Parts/tools: Motherboard with CPU and CPU cooler installed, RAM, GPU, PSU, screwdriver, motherboard user manual, PC monitor (attached to GPU)

Now that you've installed the CPU and the CPU cooler, you may want to perform a quick test run of your components just to make sure they all work. This test is much more difficult to perform (and troubleshoot) once everything is installed in the chassis. To do this, install GPU and connect everything to the power supply (if you don't know how to install the GPU, see section below). Make sure the power supply is connected to the motherboard (both CPU 8pin and 24pin) and GPU, then plug it in and turn it on.

Some higher-end motherboards have power buttons, but many do not. If you don't see a power button, locate the power switch pins — small pairs of prongs sticking out of colorful nodules. The power switch pins may be labeled (something like "PWR_ON"). To turn the motherboard on, use a screwdriver to tap both power switch pins at once.

You should now be able to tell if any of your components are dead or otherwise malfunctioning. If your motherboard is blinking lights or beeping at you, it's probably trying to tell you something. Some motherboards have a post code display (two digits) to help you identify what the problem is. To figure out what it's trying to tell you, consult your user manual. If your motherboard has no post code display, connect a display to the GPU and see if your system "posts" or starts up and displays the motherboard's logo.

When you are finished with the test run, turn off the power supply and wait for any LEDs on the motherboard to go dark to ensure there's no residual power in the system. Then, uninstall the GPU and unplug all power cables before proceeding with the next step.

STEP 6: MOUNT POWER SUPPLY

Parts/tools: PSU, case, PSU cables, Phillips #2 screwdriver

Unpack the PSU (or unplug it from the components if you opted for a test run) and set its cables aside (if you can).

Take a look at your case and figure out where the PSU is supposed to go (probably on the bottom, near the back) and how it can be oriented. Ideally, you want to orient the PSU so that its fan faces outside the case (via a vent). If your case has a vent on the bottom, you can mount the PSU upside down, so long as the bottom vent will receive decent airflow when the PC is finished.

If your case has no vents, mount the PSU so the fan is facing up (into the case) and make sure it has enough clearance.

Attach the PSU to the case using the four screws that came with the PSU.

If you're using a non-modular or semi-modular power supply, now is the time to run the attached cables through the case to where they'll need to end up (make use of cable management features if your case has them).

STEP 7: INSTALL MOTHERBOARD

Parts/tools: Case, motherboard, I/O shield (if not attached to the motherboard), Phillips #2 screwdriver, screws, motherboard user manual

If your motherboard came with an unattached I/O shield — a rectangular sheet of metal with cutouts for the motherboard's ports — you should first snap it into place in the back of your case (make sure it's oriented correctly). I/O shields usually have sharp edges, so watch your fingers.

Once the I/O shield is in place, you can install the motherboard. Double-check to make sure your cables are all threaded through to the correct place, and then place the motherboard (align it with the I/O shield, first). Using a Phillips #2 screwdriver, mount the first screw — the center screw — to hold the motherboard in place. Make sure you do not drag your motherboard across the standoffs attached to the chassis.

The number of screws you will need to mount the motherboard will vary based on the board, but a full-size ATX motherboard usually takes 9 screws. Fill all available screw holes.

Connect the power supply to the motherboard. There are two main connections — an 8-pin CPU connector toward the top of the board and a 24-pin connector from the side.

Pro-tip: Before you mount the motherboard, check to make sure the case has motherboard standoffs installed. These usually look like a nut with threading on the end. Do not insert unnecessary standoffs.

STEP 8: INSTALL GPU

Parts/tools: Motherboard, GPU, Phillips #2 screwdriver, screws, motherboard user manual

Find the PCIe* x16 slot on your motherboard. It will be the longest PCIe* slot and may be a different color than the others. If your motherboard has more than one PCIe* x16 slot, check the user manual to see if one slot needs to be prioritized. If any slot can be used, determine which slot you'll be using based on where other components are placed — you want your GPU to have some breathing room.

Depending on your case, you may need to remove I/O covers (small metal tabs blocking the back panel of your case) to accommodate your GPU's I/O (HDMI, DisplayPort, DVI, etc.) and make it accessible to the exterior of the chassis.

Remove the GPU from its antistatic packaging and carefully align it with both the rear retention bracket and the slot itself, and then gently push it into the PCIe* x16 slot (you may hear a click). The PCIe* tab on the motherboard may move into a locked position should you need to reseat the GPU.

Once the GPU is fully seated, secure it to the back of the case using one or two screws. If your GPU requires auxiliary power connectors, connect it to the power supply.

STEP 9: INSTALL STORAGE

Parts/tools: Motherboard, SSDs, HDDs, Phillips #2 screwdriver, screws, case/chassis user manual

Firstly, inspect your case. Every case is a little different when it comes to drive bays.

You should be able to find a stack of bays in different sizes somewhere inside your case. They may have little plastic switches, in which case they are tool-free bays, or they may just look like metal brackets.

Storage generally comes in two sizes, 2.5-inch (HDDs and SSDs) and 3.5-inch (HDDs). Most 3.5-inch bays can accept 2.5-inch drives, but not vice versa (some 3.5-inch bays will have trays that aren't designed for 2.5-inch drives, but they can still fit 2.5-inch bays). You may also see larger bays in your case — these are for larger drives such as optical drives and are usually located in the front of the case, near the top.

If you have tool-free bays, each bay will have its own plastic lever or switch. Open or unlock the lever or switch and you should be able to pull out the tray. Place your drive in the tray — some 3.5-inch trays will be designed to accept 2.5-inch trays. If they are, you'll need to screw the 2.5-inch drive to the 3.5-inch tray so it doesn't move around.

Slide the tray back into the bay. It should click into place.

If you don't have tool-free bays, you'll see a metal bracket (it will be big, like a sheet), with slats or holes in it. To put a drive in one of these "bays," all you have to do is slide the drive between the metal bracket and the side of your case and screw it into place. Use as many screws as the chassis manual recommends, but if you don't have enough screws most drives will be fine with just two screws.

Once your drives are all in place, connect them to the motherboard (using a SATA cable, which should have come with either your drive or your motherboard) and to the power supply.

Pro-tip: If you have trouble finding the bays or figuring out what type of bays your case has, consult your case's user manual.

STEP 10: INSTALL OPERATING SYSTEM

Parts/tools: PC, monitor, mouse, keyboard, OS saved to a flash drive

If you haven’t already prepared your operating system (OS) on a USB flash drive, now is the time to do so. (See the above section on operating systems under “PREP 3: Select your components” for more details.)

Plug in the USB flash drive that contains your OS, as well as a monitor, mouse, and keyboard, and turn on your PC.

The first screen you see will tell you to press a key to enter the system setup or BIOS. Press the key to open BIOS. (If the screen flashes off too quickly for you to see the key, consult your motherboard's user manual.)

First, you'll want to check to makes sure your components are all installed and being recognized. Find the page in BIOS that shows your PC's system info (different motherboards have different BIOS setups, but you should be able to find a screen that gives you this information) and check to make sure the system is recognizing everything you've installed so far.

Next, poke around BIOS until you find the Boot page (may be called "Boot Order" or "Boot Priority"). Change the boot order so that your flash drive is first and the drive you want to install your OS on (if you're using an SSD as a boot drive, you will want to install the OS here) is second.

Restart your computer. Your computer will boot from the USB and the OS installer will pop up. Follow the instructions to finish the installation.

Pro-tip: Create the OS installer ahead of time.

Troubleshooting: If the PC doesn't turn on at all, you might have a problem with your power supply.

Troubleshooting: If the PC turns on but you don't see anything on the screen, or it doesn't seem to start up, check to make sure all cables, especially power cables, are connected.

Pro-tip: If you're trying to enter BIOS with your keyboard and it's not working, it's probably your keyboard that's not working. Check your peripherals to make sure they're working before you panic.

Troubleshooting: If you have trouble booting to the USB drive, ensure the motherboard is set for the installation type you are attempting. Most UEFI-enabled platforms will boot to the UEFI partition scheme first before attempting Legacy.

IT DOESN'T END HERE

If you’ve made it all the way through our guide, congratulations on finishing your build (especially if this is your first time)! The work, however, doesn’t necessarily have to end here.

The best thing about building your own gaming PC is that the job is never truly finished. As advancements in hardware continue to emerge, a custom PC’s capacity for customization is nearly limitless, and your own rig can be as up-to-date as you desire according to both your needs and budget.

When you’re next checking the recommended specs for a new game you want to play, keep these possibilities in mind. The PC you just built will serve as your foundation for all the gaming experiences ahead, and fine-tuning your components is all part of the fun of owning it.

Now that you know how to build a gaming PC, consider integrating your machine into a fully fledged battlestation. You can also learn how to get the most out of your build via advanced techniques like overclocking your CPU.

Shop Intel® Core™ Processors

Shop Processors

Processeur Intel® Core™ i9-10900K

  • 20 MB Intel® Smart Cache Mémoire cache
  • 10 Cœurs
  • 20 Fils
  • 5.30 GHz Fréquence Turbo maxi
  • K - Unlocked
  • 10th Generation
Lancer la comparaison

Processeur Intel® Core™ i5-10600K (12 Mo de cache, jusqu'à 4,80 GHz)

  • 12 MB Intel® Smart Cache Mémoire cache
  • 6 Cœurs
  • 12 Fils
  • 4.80 GHz Fréquence Turbo maxi
  • K - Unlocked
  • 10th Generation
Lancer la comparaison

Processeur Intel® Core™ i7-10700K (16 Mo de cache, jusqu'à 5,00 GHz)

  • 16 MB Intel® Smart Cache Mémoire cache
  • 8 Cœurs
  • 16 Fils
  • 5.10 GHz Fréquence Turbo maxi
  • K - Unlocked
  • 10th Generation
Lancer la comparaison

Shop Intel® Solid State Drives

Shop SSD's

Unité de stockage SSD Intel® Optane™ série 905P (960 Go, PCIe* x4 demi-hauteur, 20 nm)

  • 960 GB Capacité
  • HHHL (CEM3.0) Format
  • PCIe 3.0 x4, NVMe Interface
Lancer la comparaison
Lancer la comparaison

Unité de stockage SSD Intel® série 760p (2,048 To, M.2 80 mm, 4 PCIe 3.0, 3D2, TLC)

  • 2.048 TB Capacité
  • M.2 22 x 80mm Format
  • PCIe 3.1 x4, NVMe Interface
Lancer la comparaison

Unité de stockage SSD Intel® série 760p (512 Go, M.2 80 mm, 4 PCIe* 3.0, 3D2, TLC)

  • 512 GB Capacité
  • M.2 22 x 80mm Format
  • PCIe 3.1 x4, NVMe Interface
Lancer la comparaison

Infos sur le produit et ses performances

1Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade.
2Intel does not control or audit third-party data. You should consult other sources to evaluate accuracy. Intel® technologies may require enabled hardware, software or service activation. No product or component can be absolutely secure. Your costs and results may vary.
3Altering clock frequency or voltage may damage or reduce the useful life of the processor and other system components, and may reduce system stability and performance. Product warranties may not apply if the processor is operated beyond its specifications. Check with the manufacturers of system and components for additional details.